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Abstract. Threshold Schnorr signatures enable t-out-of-n parties to collaboratively produce signa-
tures that are indistinguishable from standard Schnorr signatures, ensuring compatibility with existing
verification systems. While static-secure constructions are well understood and achieve optimal round
complexity, obtaining full adaptive security—withstanding up to t → 1 dynamic corruptions—under
standard assumptions has proven elusive: Recent impossibility results (CRYPTO’25) either rule out
known proof techniques for widely deployed schemes or require speculative assumptions and ideal-
ized models, while positive examples achieving full adaptivity from falsifiable assumptions incur higher
round complexity (EUROCRYPT’25, CRYPTO’25).
We overcome these barriers with the first round-optimal threshold Schnorr signature scheme that, under
a slightly relaxed security model, achieves full adaptive security from DDH in the random oracle model.
Our model is relaxed in the sense that the adversary may adaptively corrupt parties at any time, but
each signer must refresh part of their public key after a fixed number of signing queries. These updates
are executed via lightweight, succinct, stateless tokens, preserving the aggregated signature format. Our
construction is enabled by a new proof technique, equivocal deterministic nonce derivation, which may
be of independent interest.

1 Introduction

Threshold signatures [Des88, DF90] are a fundamental primitive in decentralized systems, forming the back-
bone of many blockchain protocols and distributed applications. In a (t, n)-threshold signature scheme, any
subset of at least t parties can jointly produce a valid multi-party signature, while smaller subsets learn noth-
ing that would enable them to forge one. Originally introduced in the late 1980s [Des88, DF90, Ped92, Ped91],
threshold signatures have seen renewed attention in recent years [KG20, BCK+22, CGRS23, CKM23,
CKK+25a, CS25a, CKM25, BDLR25b, KRT24, DR24, BDLR25a, RRJ+22], largely due to their role in
distributed trust infrastructures and cryptocurrency systems.

Among existing constructions, Schnorr-based [Sch90] threshold signatures are particularly appealing for
their e!ciency and compactness. An important advantage is that the resulting signatures are indistin-
guishable from standard Schnorr signatures, allowing verification by unmodified systems. This property
ensures compatibility with platforms such as Bitcoin, which introduced Schnorr signatures in the Taproot
upgrade [WNR21].

A Schnorr key pair consists of a secret key sk → Zp and a public key pk = g
sk in a cyclic group G of prime

order p with generator g. To sign a message m, the signer samples a random value r ↑$ Zp, sets R = g
r,

and computes the signature ω
→ = (R, s), where

s = r + c · sk, c = HSig(pk, R,m).

Verification checks g
s = R · pkc, and unforgeability follows from the discrete logarithm (DL) assumption

in the random oracle model (ROM) [PS96]. Schnorr signatures are well-suited for thresholdization, as their
linearity enables multiple parties to collaboratively compute signatures while preserving compactness and
compatibility with standard formats.

Security guarantees for threshold signatures are typically categorized as static or adaptive. In the static
setting, the adversary must choose which parties to corrupt before protocol execution [CKM23, CGRS23].
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Adaptive security, in contrast, allows the adversary to select corruptions dynamically during execution [CKM23,
BDLR25b], reflecting the needs of practical deployments. The strongest form, fully adaptive security, permits
up to tc = t↓1 corruptions. Achieving this e!ciently for Schnorr-based threshold signatures remains a major
open challenge [CKM25, CS25a, CKK+25a].

Prominent static-secure examples of Schnorr-based schemes include FROST [KG20, BCK+22, CGRS23]
and SPARKLE [CKM23], whose practical relevance has led to standardization e"orts: the IETF’s CFRG is
formalizing FROST [CKGW24], and NIST’s NIST IR 8214B [BD22] explicitly calls for threshold Schnorr
signature schemes. The NIST call further stresses the importance of withstanding adaptive corruptions,
crystallizing the central challenge: design threshold Schnorr protocols that

(1) remain verifiable by standard tools,
(2) achieve unforgeability against fully adaptive adversaries, and
(3) have low round-complexity.

1.1 The Challenge of Constructing Fully Adaptive, Round Optimal Schemes

One immediate question is whether known round-optimal schemes with static security can be extended
to the fully adaptive setting or if fundamental limitations in current proof techniques and constructions
prevent this. Despite substantial progress, recent results suggest that there are inherent barriers to achieving
fully adaptive security for threshold signature schemes. Crites, Komlo, and Maller [CKM25] present a meta-
reduction showing that fully adaptive security is impossible for threshold signature schemes with key-unique
signing keys, meaning that each public key uniquely determines a corresponding secret key (e.g., pk

i
= g

ski).
Their impossibility result applies in two settings:

(1) any reduction to an underlying non-interactive assumption, and
(2) any reduction to the (algebraic) one-more discrete logarithm assumption based on rewinding, if 2 · tc ↔ t

(with tc denoting the number of corrupted parties and t denoting the signing threshold).

As a consequence, fully adaptive security proofs using known techniques are ruled out for the most prominent
constructions, including FROST [KG20, BCK+22, CGRS23] and SPARKLE [CKM23]. In a complementary
line of work, Crites and Steward [CS25b], as well as Crites, Katz, Komlo, Tessaro, and Zhu [CKK+25b], show
that for schemes with Shamir-secret-shared secret keys and exposing partial public keys of the form pki =
g
ski , achieving full adaptive security requires the hardness of a specific low-dimensional vector representation

(LDVR) problem. This problem is closely related to the so-called P-problem introduced in [CS25b]. They
circumvent the impossibility of [CKM25] by doing a reduction without rewinding but instead based on the
algebraic group model (AGM), an idealized model introduced by Fuchsbauer, Kiltz, and Loss [FKL18]. The
authors show that if this new LDVR assumption is hard and the algebraic one-more DLog assumption holds,
then FROST can be proven fully adaptively in the AGM. Furthermore, they show that the hardness of the
LDVR assumption is necessary for proving fully adaptive security for the class of signature schemes whose
partial public keys are formed as described earlier [CKK+25b]. Unfortunately, both the P-problem and the
LDVR problem are non-natural, and their hardness is not fully understood by the community. For example,
the hardness of LDVR is proven unconditionally for parameter sets tc < t/2, but there remain parameters
(including the fully-adaptive case) for which the hardness is unclear and must be assumed [CKK+25b].

The existence of positive examples o"ers hope for overcoming these limitations. In particular, there exist
Schnorr threshold signature schemes whose security can be proven from falsifiable assumptions. Glacius [BDLR25b],
KRT [KRT24], and Gargos [BDLR25a] avoid known impossibility results by using di"erent key structures.
They encode secret shares via Pedersen commitments [Ped92], which allow for multiple valid openings. This
property renders the corresponding signing keys non-unique, thereby eliminating the key-uniqueness property
exploited in existing attacks. Glacius and KRT achieve full adaptive security in five rounds, while Gargos
reduces the round complexity to three.

Despite this progress, an important trade-o" remains: achieving full adaptive security from falsifiable
assumptions appears to require additional interaction, whereas optimal round complexity currently relies
on highly speculative assumptions. Closing this gap, namely obtaining full adaptive security in the minimal
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number of rounds from falsifiable assumptions, is not merely an incremental improvement but a key milestone
for the theory and practice of Schnorr threshold signatures. We therefore pose the challenge:

Can we construct a fully adaptively secure threshold Schnorr signature scheme from falsifiable as-
sumptions with minimal round complexity?

To achieve this goal under standard assumptions and with minimal interaction, we slightly relax the standard
adaptive security model. Our variant guarantees full adaptive security for up to a fixed number d of signing
queries per period. Once this bound is reached, each signer performs a lightweight update that refreshes part
of its partial public key using a succinct, stateless token that is gossiped to the other signers. The aggregated
signature format remains unchanged, and the update tokens are of succinct size and can be e!ciently
computed. This represents a di"erent functionality from the conventional ideal model for threshold signatures,
but one that is operationally natural: periodic key updates are common practice in secure deployments [Ama,
Goo, Mic, BPR22], and NIST’s call for threshold cryptography [BD22] explicitly allows such adjustments,
stating that “It is acceptable that this [adaptive security] comes at the expense of some adjustment of the
ideal functionality.”

1.2 Our Contributions

In this work, we answer the central open question in the a!rmative. We present the first threshold Schnorr
signature scheme that simultaneously attains full adaptive security from falsifiable assumptions and matches
the optimal round complexity of the best-known static protocols. Our main contributions are as follows:

– Fully adaptive security from DDH. Our scheme achieves full adaptive security under the Decisional
Di!e–Hellman (DDH) assumption for a fixed number of d signing queries.

– Optimal two-round interaction. The protocol requires only two rounds of interaction, matching the
round complexity of the most e!cient static constructions.

– Drop-in compatibility. The generated signatures are syntactically identical to standard Schnorr sig-
natures, enabling seamless integration with existing verification algorithms and infrastructure.

We augment our construction with an e!cient update mechanism that refreshes a designated portion of
each signer’s public key after every d signing queries, thereby extending security to fully adaptive adversaries
for polynomially many messages. The update is stateless, requires only logarithmic-size tokens in d, and
integrates cleanly into environments already supporting periodic key rotation. We emphasize that our
mechanism for updating partial public keys is designed solely to extend adaptive security across many
signing queries. It is not a proactive refresh protocol in the sense of [BPR24, HJJ+97, KGG24, CGG+20],
and our scheme should not be interpreted as providing proactive security.

Additional Benefits. In addition to our main goal of achieving a fully adaptive Schnorr threshold signature
from falsifiable assumptions in two rounds, our construction also inherits further desirable properties. These
were not the focus of our design, yet our scheme attains them naturally and, to the best of our knowledge,
no other fully adaptive Schnorr scheme o"ers the same guarantees. First, it supports deterministic signing,
removing dependence on external randomness and making the signing process robust against both failures in
randomness generation [HDWH12] and state-rewinding attacks [NRSW20]. Second, our protocol is stateless:
beyond their secret signing key, signers maintain no secret state across or within signing sessions. Beyond
their long-term keys, they need not store any additional secret information, which greatly simplifies deploy-
ment and eliminates common pitfalls such as synchronized counters or stateful nonce management. These
properties have previously been highlighted as important in [NRSW20, GKMN21] though these Schnorr
signature schemes do not achieve full adaptive security.

1.3 Related Work

There is extensive literature on threshold signatures across a variety of settings, including foundational
work [DDFY94, GRJK00, Sho00], schemes for BLS-based signatures [Bol03], (EC)DSA [GGN16, GG18,
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LN18, DKLs19, DOK+20, GKS#20, CGG+20, CCL+20, DJN+20, YCX21, ANO+22], and Schnorr sig-
natures [GJKR96, GJKR07, GJKR03, KG20]. We already discussed (statically secure) FROST [KG20,
BCK+22, CGRS23], SPARKLE [CKM23] and the recent impossibility results [CKM25, CKK+25b, CS25b]
in the introduction, we restrict our focus to the most directly relevant prior work that is not a"ected by the
recent impossibility results.

First, [CKK+25b] shows that FROST can be proven fully adaptively secure in the AGM under the LDVR
and AOMDL assumptions. This yields the first two-round fully adaptive Schnorr threshold signature scheme.
However, the proof relies on the speculative hardness of LDVR in the fully adaptive setting and requires the
algebraic group model, adding another heuristic. While this is an important step in demonstrating the feasi-
bility of two-round fully adaptive threshold Schnorr signatures, we view it primarily as a theoretical result.
Our aim is to match this round complexity while relying only on standard assumptions. Second, the scheme
proposed by Katsumata, Reichle, and Takemure [KRT24], uses one-time masking of signing transcripts
[DKM+24] and achieves adaptive security under the discrete logarithm (DL) assumption. This approach
supports full corruption by employing distinct polynomials across forking executions, thereby preventing key
reuse across transcripts. However, to ensure soundness, all signers must maintain a globally consistent view,
resulting in a five-round signing process. Third, Glacius relies on correlated random oracle programming and
achieves adaptive security under DDH in five rounds [BDLR25b]. The subsequent Gargos [BDLR25a] uses a
similar correlated random oracle programming technique, but compresses the round-complexity of Glacius to
three rounds. We also build our construction based on correlated random oracle programming. To circumvent
the need for a third round, we extend this technique with a novel proof strategy, which we call equivocal
deterministic nonce derivation. Putting together both these proof strategies, we prove our two-round scheme
fully-adaptively secure under DDH for up to d messages.

The deterministic Schnorr mutli-signature scheme MuSig-DN [NRSW20] also uses deterministic nonces
to reduce round complexity of MuSig [MPSW19], but in an inequivocable way. This leads to a Schnorr
multi-signature in two rounds, but it is not fully-adaptively secure. Their performance is comparable to our
scheme instantiated with a signature-bound d = 8192 (c.f. Section 6), but their techniques are not applicable
to fully-adaptive corruptions setting, since their inequivocable approach yields the commitment-problem.

2 Technical Overview

We start our overview with the three-round, fully adaptive threshold Schnorr signature scheme by Bacho
et al. [BDLR25b, BDLR25a], which is based on correlated oracle programming [DR24, BDLR25b] (cf. Sec-
tion 2.1). We outline the core idea of this technique to demonstrate why its commit-and-open structure poses
significant challenges for a two-round adaptation. Based on these insights, we take a step back and propose
a novel proof strategy based on equivocal deterministic nonce derivation in Section 2.2 that enables our final
two-round, fully adaptive threshold Schnorr scheme, which we present in Section 2.3.

2.1 Fully Adaptive Threshold Schnorr Signatures in Three Rounds

We provide a brief overview of correlated random-oracle programming, which was first used by Das and
Ren [DR24] to prove BLS signatures adaptively secure and was then used by Bacho et al. [BDLR25b,
BDLR25a] in the context of three-round fully adaptive Schnorr. First, we recall the required modifications of
the Schnorr signing protocol to enable full adaptive security using correlated random-oracle programming.
Second, we discuss the key insights on why this technique inherently seems to require at least three rounds.

Switching Challenge Embedding. The core idea of correlated random-oracle programming is to relocate the
embedding of the DL challenge during a security proof. Rather than embedding it in the aggregate verification
key pk = g

sk for a key sk =
∑

sk
i
→ Zp, each signer holds a triple

sk
i
= (x(i), w(i), u(i)),
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where x(X), w(X), u(X) → Zp[X] are polynomials of degree t + 1 with constant terms x,w, u, respectively.
The aggregate key is sk = (x(X), w(X), u(X)) with verification key

pk = g
x · hw · vu,

where w(0) = u(0) = 0 and g, h, v are generators of G. This looks similar to the standard construction
in which pk = g

sk, but when doing a security proof, we allow the reduction to know the full description
of (x(X), w(X), u(X)) while embedding the DL challenge in g and h. Since the reduction knows the full
description of the polynomials, handling adaptive corruptions is rather easy: the reduction can simply for-
ward key-shares (already known to the reduction) when the adversary corrupts a party (without relying on
interactive assumptions as needed for FROST [CGRS23]). The remaining challenge is how to embed a DL
instance between g and h when w(0) = u(0) = 0.

Rigging Keys. To encode the DL challenge into the public parameters, the reduction “rigs” the key by setting
w = 1 (instead of w = 0) and sampling u ↑$ Zp (instead of u = 0). This transforms the verification key into

pk = g
x · h · vu = g

x+ωh+ωv·u,

where h = g
ωh and v = g

ωv . The DL challenge can thus be encoded in h, while the reduction retains full
knowledge of x and u. If the adversary produces a valid forgery under pk, the reduction can extract the
e"ective secret key

sk = x+ εh + εv · u,

via rewinding and recover εh. Crucially, since x,w, and u are independently chosen, the reduction can
simulate honest and corrupted shares sk

i
without restriction, as the challenge lies solely in h. While this

approach sidesteps the usual threshold bounds in rewinding-based proofs, it introduces a new challenge: the
rigged key no longer satisfies the standard Schnorr verification equation.

Fixing the Schnorr Verification Equation. With rigged keys, a Schnorr signature ω = (R, s) no longer satisfies
the standard verification equation:

g
s = g

r+x·c ↗= g
r+(x+ωh+ωv·u)·c = g

r+(x+ω)·c
,

where c := HSig(pk, R,m) and ε := εh + εv · u ↗= 0. To restore correctness, Bacho et al. [BDLR25b] modify
the nonce to incorporate the extra key parts w and u setting

R ↑ g
r · H0(d)

w · H1(d)
u
,

where H0,H1 : {0, 1}↑ ↘ G are random oracles and d is a session identifier whose definition we specify later.
In the non-rigged case (w = u = 0), this nonce construction yields to the standard R = g

r. In the rigged case,
the reduction programs the oracles HSig,H0,H1 to enforce the verification equation. Concretely, it samples
c,ϑ ↑$ Zp and sets

HSig(pk, R,m) = c, H1(d) = g
ε
, H0(d) = g

↓(εu+cω)
.

This correlated programming ensures that:

ϖ + ϑ · u+ c · ε = 0,

without requiring the discrete log of h = g
ω. Thus, signatures with the modified nonce verify correctly.

By DDH hardness, such correlated programming is indistinguishable from uniform random oracle behav-
ior [DR24, BDLR25b, BDLR25a]. Assuming that the d is chosen appropriately, this achieves full adaptive
security for Schnorr signatures. However, the choice of d is central to e!ciency, as will be discussed shortly.
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Enabling Correlated Random-Oracle Programming. For the simulation to succeed, it is necessary that ϖ +
ϑ · u + c · ε = 0 holds in every signing session. This is enforced through a correlated programming of
H0(d), H1(d), and HSig(pk, R,m). A key challenge is that each triple (ϑ, ϖ, c) is valid only for a single tuple
(pk, R,m). Since m and pk are already known to the adversary in advance, the only remaining uncertainty
lies in R. However, R is formed from the parties’ shares, and a rushing adversary can choose its new shares
after seeing those of the honest parties. Therefore, the reduction must know the combined R ahead of time
in order to program the oracles consistently. Both Glacius [BDLR25b] and Gargos [BDLR25a] address this
issue by employing a commit-and-open strategy.1 In the first round, each party commits to their inputs.
This reveals the adversary’s choices to the reduction, allowing to program the random oracles while keeping
the adversary unaware of the final value, R. In the second round, the parties reveal their commitments so
that R can be computed. In the third round, each party publishes its partial signature on (pk, R,m) using
its share sk

i
.

2.2 A Two-Round Solution

The three-round protocol described above includes a commit-and-open step to ensure that the reduction
learns the combined nonce R before the adversary does. This measure is necessary because a rushing adversary
could otherwise select its nonce share Ri after observing those of the honest parties, thereby preventing
consistent programming of the random oracles [BDLR25b].

Our goal is to remove this step and achieve round optimality. The core idea to avoid this extra round is
that, if at the start of the signing process our reduction already knows each corrupted party’s nonce share Ri,
while the adversary still sees the combined nonce R as uniformly random, then we can program the random
oracles immediately, making the commit-and-open phase unnecessary.

A straightforward solution for this idea would be an o$ine–online design in which each signer pre-commits
to a sequence of nonces during a setup phase (e.g., via a vector commitment [CF13]) and later consumes these
pre-computed nonces in the online phase. While conceptually simple, this approach has severe drawbacks for
deployment: it forces the protocol to become stateful, which we generally want to avoid [GKMN21]. To ensure
that corrupted parties use the correct pre-committed nonce, all signers would need to maintain synchronized
counters and agree on which index has been consumed so far. Each signer would also need to update and
persist local state reliably, which reintroduces the classic di!culties of state continuity (handling crashes,
rollbacks, and synchronization across devices).

Therefore, we pursue another idea which allows us to proram the random oracles accordingly: We modify
the signing protocol so that each Ri is computed deterministically (and also verifiably) from the public
key pk, the message m, and the set of signers S. Once m and S are fixed (which they are at the beginning
of the first signing round), the nonce shares of both honest and corrupted parties are uniquely determined,
and our reduction can program the random oracle accordingly. As the deterministic nonce evaluation is also
verifiable, even a rushing adversary is uniquely committed to its Ri for each signing session, enabling a
two-round protocol.

The technique of having verifiable deterministic nonces is used in practice [NRSW20] for statically secure
schemes. However, the main novel challenge for us is to generate these nonce shares verifiably from public
inputs while retaining security against fully adaptive corruption. This is an instance of the committing
problem [CFGN96], in which later corruptions require retroactive justification of earlier deterministic choices.
While the commitment problem seems inherent for deterministic and verifiable schemes, we resolve this by
deriving verifiable pseudorandom nonces in an equivocal manner.

Pseudorandom Nonce Derivation. Following the above intuition, we modify the signing protocol so that the
combined nonce R is pseudorandom and depends on the message m and signer set S. Each signer i holds an
additional secret key ki for a PRF family {Fk}, and we set the input to the random oracles as d ↑ (m,S).

1 Gargos uses three rounds, while Glacius has five; we describe a simplified three-round version su!cient for this
overview.
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Thus, while we keep the correlated-oracle-programming structure Ri ↑ g
ri · H0(d)wi · H1(d)ui , with the

crucial di"erence that ri is no longer uniform but pseudorandom, i.e.,

ri ↑ Fki(d).

The combined nonce then takes the same form, but with pseudorandom combined value r ↑
∑

i↔S
Fki(d).

With overwhelming probability, R is unique for each pair (m,S), provided all partial nonces Ri are well-
formed. Moreover, since R depends on pseudorandom outputs, the adversary can guess its value only with
negligible probability. Together, these properties ensure that, except with negligible probability, the reduction
knows R in advance and can program the random oracles consistently. Ensuring this well-formedness is
therefore essential to eliminating the extra rounds.

Asserting Well-Formedness. We require a proof of well-formedness of the partial nonces Ri, since otherwise
an adversary could simply deviate from the protocol and provide a nonce share not known to the reduction
challenger. This would again be a rushing adversary and void our programming capabilities. As a natu-
ral starting point, we seek exponent-VRFs introduced by Nick et al. [NRSW20] and formalized by Boneh
et al. [BHL24]. Exponent-VRFs are a bridge between PRFs and VRFs. They are linked to a public key
K = g

k, and intuitively allow a user, on input a message m̂, to compute

(R̂, r̂,ϱ) ↑ eVRF(k,m), where r̂ ↑ PRF(k, m̂), and (R̂,ϱ) ↑ VRF(k, m̂),

such that R̂ = g
r̂. In addition, ϱ verifies the correct computation of r̂ using the key k, verifiable under K.

Ideally, we would like to follow this strategy and use eVRFs to compute (R̂i, r̂i) used as partial nonces for
all signers, which would allow for verifiable deterministic nonces.

eVRFs and Adaptive Corruptions. Unfortunately, we cannot rely on verifiable deterministic nonces from
eVRFs, since we aim for fully-adaptive security. While they enable correlated programming in two rounds—
the basis of our construction—it is unclear how to deal with adaptive corruptions: At some point in the proof,
we must replace the eVRF’s pseudorandom outputs with uniformly random values, accompanied by simulated
proofs, to incorporate the pseudorandomness of our construction into our security argument. This step is
standard under static corruptions but fails in the adaptive setting. If the adversary corrupts a previously
honest party after the PRF-to-random substitution, it can detect the inconsistency:

– Upon corruption, the challenger must reveal the party’s PRF key.
– That key must retroactively justify all prior eVRF outputs.
– Since substituted values were not derived from the key, the adversary detects the mismatch—an instance

of the committing problem [CFGN96] in fully adaptive settings.

This obstacle prevents us from applying the standard PRF-to-random substitution in the adaptive setting.
To proceed, we therefore explore potential workarounds.

A Round-Optimal Solution Using Heuristics. As a starting point, we consider a workaround in the random
oracle model. While this solution ultimately fails due to soundness issues, it provides useful intuition about
the structure we aim to achieve and the building blocks we require. The main idea is to use the random
oracle to derive the pseudorandom values ri directly, and pair the provided nonces g

ri with a proof of well-
formedness. Doing so would create a useful gap between the reduction and the adversary: the adversary must
output consistent elements rj observable to the reduction, while the reduction can sample uniformly random
elements and program the oracle so that for each honest party i,

RO(ki,m, S) = ri

for a random key ki. As long as the adversary does not know ki, the values ri appear uniformly random; after
corruption, consistency still holds since the oracle was programmed accordingly. In this way, the reduction
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avoids a PRF-to-random substitution entirely, as the values ri are already uniform. Furthermore, the ap-
proach is round-optimal and circumvents the committing issue. However, it introduces a critical theoretical
drawback since proof systems lose soundness when instantiated over a programmable random oracle. In par-
ticular, soundness would require knowledge of the oracle’s full description, which is inherently exponential
in the security parameter.2

Since our goal is a two-round, fully adaptive Schnorr threshold signature scheme from falsifiable assump-
tions, we cannot adopt this heuristic. Nevertheless, it suggests a path forward: if we can construct a random
function with a succinct, polynomial-size description that can be made retroactively consistent with some
key, we can resolve this tension and achieve our desired security guarantees.

Substituting the RO. To build our fully adaptive two-round threshold Schnorr scheme, we require a function
that produces uniform-looking outputs on input d, yet admits a succinct description and can be explained
with some key k, after a party has seen a couple of evaluations of this function. A natural candidate is to use
a random polynomial: A polynomial f → Zp[X](d) of degree d, with coe!cients a0, . . . , ad sampled uniformly
from Zp, has a succinct description of size d+ 1, and its outputs are fully deterministic. Yet the first d+ 1
evaluations appear indistinguishable from uniform: up to d input–output pairs, the constraints that have
been employed by choosing d evaluation points can be satisfied by |Zp| di"erent polynomials of degree d,
so the actual coe!cients remain hidden. Given d

→ ≃ d + 1 elements y → Zd
→

p
representing f ’s evaluations at

d
→ distinct points, finding f ’s coe!cients x → Zd

→

p
amounts to solving a linear system Ax = y, where A is

a suitable Vandermonde matrix. The said system is guaranteed to be underdetermined, nullifying the risk
of inconsistencies. Moreover, by treating the coe!cients as the key k = (a0, . . . , ad), the function provides
exactly the properties we sought from the random oracle:

– Outputs are indistinguishable from uniform as long as the key remains hidden (up to d+1 evaluations).
– For a fixed key, outputs are fully determined.
– With simulated proofs and programmable commitments, the challenger can sample (up to d+1) uniform

outputs and later find a consistent key upon corruption.
– The description of the function is of polynomial size, and we can build (e!cient) proof systems that

guarantee well-formed outputs.

Furthermore, the very nature of polynomials enables active signers to derive a random exponent in a state-
less fashion. Specifically, leveraging polynomials for nonce derivation means that knowing only m and S is
su!cient to evaluate f . This removes the need to maintain synchronized counters, as required by the afore-
mentioned solution based on precomputed nonces. Using polynomials for randomness derivation, we can
now put things together and describe our construction of a fully adaptive round-optimal Schnorr threshold
signature scheme for up to d many adaptively-chosen messages. After describing this construction, we explain
how to enhance the scheme to support a polynomial number of messages to sign.

2.3 A Fully-Adaptive Two-Round Schnorr Threshold Signature

We start the overview of our construction with key generation. As outlined above, each signer receives key
shares sk

i
= (x(i), w(i), u(i)). In addition, each signer samples a uniformly random polynomial fi of degree d

and commits to this polynomial using a polynomial-commitment scheme resulting in Cfi . We then enhance
the partial public key of signer i by the polynomial commitment, setting it to pk

i
= (gx(i)hw(i)

v
u(i)

,Cfi).
In signing round one, each signer sets d ↑ (m,S), where m is the message to sign and S consists of all

partial public keys of the t signers participating in the signing request. Then, each signer computes:

Ri ↑ g
ri · H0(d)

wi · H1(d)
ui , where ri ↑ fi(d)

2 Also, it is worth noticing that any such system would incur a direct random oracle instantiation, roughly due
to the arithmetization procedure of the relation, which additionally leads to practical issues as well as known
vulnerabilities [CGH98].
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Each signer then forwards Ri alongside a proof of well-formedness to all other signers. In signing round two,
each signer verifies the provided shares Rj of all other signers using the partial public keys contained in S

and computes the combined nonce:
R ↑

∏

j↔S

Rj ,

The i-th signer then computes the challenge c ↑ HSig(pk, R,m), and outputs the partial signature:

si ↑ ri + cxi · ςi

where ςj is a Lagrange interpolation factor. Upon receiving all partial signatures, the final signature is
computed as:

ω ↑



R,

∑

j↔S

sj



 = (gr, x · c+ r) ,

which verifies against the public key pk using the standard Schnorr verification equation.

Extending the Signing Limitation. Using this protocol, we can support adaptive corruptions up to d sign-
ing queries. However, once an honest signer reaches the evaluation bound of d queries, it must refresh its
randomness source. Although d can, in principle, be set arbitrarily large to suit practical needs, we observe
that the e!ciency of the resulting proofs–such as the prover’s runtime, and in many cases the proof size or
the verifier’s runtime–is a"ected by d. Therefore, it is advantageous to keep d reasonably small to maintain
practical e!ciency.

To do so, we introduce an e!cient update procedure. In this update procedure, each signer samples a fresh
polynomial f →

i
→ Zp[X] of degree d, commits to this fresh polynomial using a polynomial commitment resulting

in Cf→i
, and gossips this fresh commitment to the other sigers. All other signers update the public key of signer

i and switch the old for the fresh commitment. Having a fresh polynomial commitment distributed, the signer
can now answer another d signing queries. We stress that the rest of the secret key (and consequently the
public key) does not need to be changed.

Proving our Scheme Secure. To prove our scheme secure, we combine correlated random oracle programming
with equivocable and verifiable nonce derivation (a.k.a, retroactively interpolating polynomials). During
setup, the challenger samples the polynomials (x,w, u) as described above. For each signer, it additionally
samples a uniformly random, perfectly hiding polynomial commitment and outputs the corresponding partial
public key:

pk
i
= (gx(i)hw(i)

v
u(i)

,Cfi).

When a signer j is corrupted, the challenger interpolates a uniformly random polynomial fj consistent
with the input-output pairs recorded for that signer so far and adjusts the commitment to match this
polynomial. It then reveals the signing key sk

j
= (x(j), w(j), u(j)) and a description of the polynomial fj .

This ensures that the signer’s internal state is consistent with all its previously answered signing queries.
To simulate signing queries, the challenger samples uniformly random elements as the polynomial outputs,
simulates the corresponding proof of nonce well-formedness, and stores the resulting input-output pair for the
yet-to-interpolate polynomial fi. Importantly, the challenger knows the full nonce Rj of each corrupted party
at the beginning of round one, since these nonces are deterministically derived from the known polynomial fj
and accompanied by simulated proofs of well-formedness. This allows the challenger to apply the correlated
oracle programming strategy described earlier. Our strategy so far works for up to d signing queries. When
this bound is reached, the challenger refreshes each honest signer’s commitment by generating a new perfectly
hiding uniformly random polynomial commitment. When the adversary performs a commitment update, the
challenger uses a knowledge extractor to obtain the new polynomial description.3 This enables the challenger
3 One may think that, in order to be extractable, the proof should be at least as large as the witness itself, which

would make the construction ine!cient; however, we only need this extractability feature in the security reduction,
where we can leverage rewinding-based extractors, and thus these proofs can be instantiated e!ciently.
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to compute the adversary’s future nonces at signing round one even after commitment updates. Finally, note
that this knowledge extraction does not interfere with signing query simulation: our protocol runs in two
rounds, and the second round aborts if the random nonces cannot be verified against the provided public
keys. However, in principle, nothing prevents an adversary from mounting cross-epoch attacks by reusing
proofs and commitments of previous epochs. To address this subtle issue, we require the knowledge-extractor
to successfully extract the witness even in presence of simulations that, looking ahead, are provided by the
reduction itself; this is why we rely on a stronger property, known as simulation extractability (see Section 4.1
for a detailed discussion).

Eventually, when the adversary outputs a valid forgery, the reduction rewinds it to extract two valid
signatures for the same random commitment. This enables recovery of the secret exponent and solves the
discrete logarithm challenge. Additionally, under the DDH assumption, the adversary cannot distinguish
our programming of the three random oracles used in the protocol, following the simulation techniques
from [BDLR25b, BDLR25a].

Applicability. Importantly, our verifiable nonce approach modifies only the structure of partial signatures,
without a"ecting the final signature. Once the partial signatures are aggregated, verification proceeds as in
the standard Schnorr scheme. The overall verification key also remains unchanged, since the added elements
in the partial public keys are used solely for verifying nonce well-formedness and do not impact the combined
key.

Each partial public key now includes a constant-size polynomial commitment, increasing its size from
one to two group elements. On the secret side, each signer’s key also grows slightly, as it must include the
coe!cients of the randomness-deriving polynomial in addition to the usual shares (x(i), w(i), u(i)). However,
rather than storing all coe!cients explicitly, each signer can derive them on the fly from the random oracle
via ai,j = RO(kRO,i, j), so that the secret key needs to be extended only by a single scalar kRO,i → Zp, as
similarly done in [BDK+18]. This optimized derivation is fully compatible with our equivocability strategy,
since we can program the random oracle as required, and it preserves verifiability, as proofs only concern
the values ai,j rather than their method of generation. We benchmark this method of on-the-fly polynomial
evaluation in Section 6.

The main computation and communication overhead comes from computing and sending a proof of well-
formedness for each partial nonce. To keep the proof system transparent and avoid additional assumptions,
we can leverage a (commit-and-prove) simulation-extractable scheme based on Bulletproofs [BBB+18], which
yields logarithmic proof size in the polynomial degree d under the discrete logarithm assumption. We imple-
mented and evaluated the Bulletproof-based nonce derivation, and observe that our scheme has comparable
performance as the deterministic (non-adaptive) Schnorr multisignature MuSig-DN [NRSW20] if we use a
equivocability bound of d = 8192 (c.f. Section 6). For smaller bounds, our protocol is much more e!cient.

Alternatively, if constant-size communication is desired, one could use proof systems such as Groth16 [Gro16],
Plonk [GWC19], Marlin [CHM+20], and Lunar [CFF+21] among the others, at the expense of introducing
stronger assumptions. We discuss the choice of a suitable proof system in Section 4.1.

3 Preliminaries

Notation and Group Description. We denote by x ↑ y the assignment of value y to variable x, and we
denote by x ↑$ X the uniform sampling of x from the set X. We utilize the symbol G := (G, p, g) to denote
a group description, where G is a cyclic group of order p, where p is a φ-bit prime, and g is a generator of
G. Given an element X → G, we let log

g
(X) denote the discrete logarithm of X with base g, i.e., log

g
(X) is

the value x → Zp, such that X = g
x. We use Zp[Z](t) to denote the set of all polynomials in Zp[Z] of degree

t, and Zp[Z]↗t to denote all polynomials of degree at most t. Both notations are straightforwardly extended
to an arbitrary finite field F by replacing Zp with the latter.
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3.1 Non-interactive Arguments

A non-interactive argument system (NARG) for relation R in the random oracle model, denoted by !,
consists of a tuple of algorithms (Setup,P,V) having black-box access to a random oracle H : {0, 1}↑ ↘
{0, 1}ϑ, with the following syntax:

– pp ↑ Setup(1ϑ): takes as input the security parameter 1ϑ and outputs public parameters pp.
– ϱ ↑ PH(pp, , ): takes as input parameters pp, a statement and witness , and outputs a proof ϱ if

( , ) → R.
– b ↑ VH(pp, ,ϱ): takes as input parameters pp, a statement and proof ϱ, and it accepts (b = 1) or

rejects (b = 0).

In this work, we consider NARGs with transparent setup, i.e. pp can be generated with a call to the random
oracle. For this reason, we may omit pp in the description of the prover and verifier algorithms as it is
implicit.

Definition 1 (Completeness). A NARG ! satisfies completeness if for every ( , ) → R, it holds that

Pr
[
b = 1 : pp ↑ Setup(1ϑ);ϱ ↑ PH(pp, , ); b ↑ VH(pp, ,ϱ)

]
= 1.

Definition 2 (Soundness). A NARG ! satisfies soundness if for every PPT adversary A, it holds that

Pr
[
b = 1 ⇐ ↗→ LR : pp ↑ Setup(1ϑ); ( ,ϱ) ↑ AH(pp); b ↑ VH(pp, ,ϱ)

]

where LR := { | ⇒ : ( , ) → R} is the set of true-statements.

If soundness holds with respect to a computationally unbounded adversary, we say that the argument has
statistical (or information-theoretic) soundness, and we call the argument a proof system.

Zero-knowledge. Informally, an argument is zero-knowledge if a proof reveals no information about the
witness [GMR85]. We formalize this property by following the syntax of [FKMV12]. A zero-knowledge
simulator S is defined as a stateful algorithm, whose initial state st = pp, that operates in two modes.
The first mode, (y, st→) ↑ S(1, st, a) takes care of handling calls to the oracle H on input a query a. The
second mode, (ϱ, st→) ↑ S(2, st, ) simulates a proof for the input statement . We define the following
“wrapper” oracles, that are stateful and share their internal state:

– S1(a) returns the first output of S(1, st, a);
– S2( , ) returns the first output of S(2, st, ) if ( , ) → R and ⇑ otherwise;
– S →

2( ) returns the first output of S(2, st, ).

Definition 3 (Zero-knowledge). A NARG ! is zero-knowledge if there exists a simulator S, with wrapper
oracles S1,S2, such that for all PPT adversaries A it holds that:

Pr

[
pp ↑ Setup(1ϑ)
AP,H(pp) = 1

]
⇓ Pr

[
pp ↑ Setup(1ϑ)
AS1,S2(pp) = 1

]

Notice that zero-knowledge is a security property that is only guaranteed for valid statements in the language,
hence the above definition uses S2 as a proof simulation oracle. Also, a zero-knowledge NARG with statistical
soundness is simply referred to as a non-interactive zero-knowledge proof (NIZK) [BFM88].

Simulation exctractability. A strong security property of NARGs is simulation extractability [DDO+01,
GM17]. Informally, from a prover producing a valid proof after seeing polynomially many proofs provided
by a simulator (even for false statements), it is possible to extract a valid witness. This property can be
formalized in many di"erent ways, depending on the model and the constraints of the adversary and the
extractor. We refer to [BCC+25] for a recent work that summarizes the main di"erences.
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Definition 4 (Simulation extractability). A NARG ! is simulation-extractable with respect to a zero-
knowledge simulator S, with wrapper oracles S1,S →

2, if for all PPT adversaries A there exists a PPT extractor
E such that:

Pr




VS1( ,ϱ) = 1
⇐ ( ,ϱ) ↗→ Q
⇐ ( , ) ↗→ R

∣∣∣∣∣∣

pp ↑ Setup(1ϑ)
( ,ϱ) ↑ AS1,S→

2(pp)
↑ E(st, ,ϱ)



 → negl(φ)

where st is the final internal state of S, and Q is the set of statement-proof pairs obtained by A when
interacting with S →

2.

The previous definition implies the weaker notion of simulation soundness [Sah99]. Informally, a NARG
is simulation-sound if it is infeasible to generate a valid proof ϱ for a false statement , even after seeing poly-
nomially many simulated proofs. The implication holds because Definition 4 imposes a negligible probability
of extraction failure, and extraction is by definition impossible for a false statement.

Discrete Logarithm and Decisional Di!e-Hellmann Assumptions. The Discrete Logarithm (abbreviated as
DL) assumption is the conjectured computational hardness of evaluating discrete logarithms in some groups.
For the sake of rigour, we say that the DL assumption holds in group G defined as above, if any PPT
adversary A has a negligible advantage AdvdlA(φ) in the security game DL(G, p, g) of Figure 1.
The Decisional Di!e-Hellmann (abbreviated as DDH) assumption is a related computational assumption.
From a high-level viewpoint, it states that given uniformly random (X,Y ) ⇔ U(Z2

p
) and Z ⇔ U(Zp) (U(·)

denotes the uniform distribution over its argument), the distributions (g, gX , g
X
, g

XY ) and (g, gX , g
Y
, Z)

are computationally indistinguishable. The statement can be made rigorous by defining a security game in
Figure 1 and assuming that any PPT adversary A has negligible advantage AdvddhA (φ) when playing it.
The DDH assumption implies the hardness of DL, since an adversary computing DL in polynomial time can
distinguish the two DDH distributions with few additional operations (compute log

g
of the last element,

check if it equals XY modulo p). The converse is not known to hold, and there exist groups in which DDH
does not hold, but DL is believed to. Hence, DDH is, to the best of our knowledge, a stronger assumption
than DL.

Game DL(G, p, g)

1 : X ↑$ Zp

2 : x ↑ A(gX)

3 : return g
x == g

X

Game DDH(G, p, g)

1 : X,Y, Z ↑$ Zp

2 : b ↑$ {0, 1}

3 : b
→ ↑ A(g, gX , g

Y
, g

(1↑b)Z+bXY )

4 : return b == b
→

Fig. 1. Security games for DL and DDH.

Commitment Schemes. A commitment scheme with message space M is a tuple of algorithms CS :=
(KGen,Com,VerCom) with the following syntax:

– ck ↑ KGen(1ϑ): takes as input the security parameter (and possibly group parameters) and outputs a
commitment key ck.

– (C, o) ↑ Com(ck,m;↼): takes as input the commitment key ck, a message m → M, and randomness ↼,
and outputs a commitment C and an opening o.

– b ↑ VerCom(ck,C,m, o): takes as input the commitment key ck, a commitment C, a message m → M,
an opening o, and it accepts (b = 1) or rejects (b = 0).
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We say that a commitment scheme whose message space is F[X]↗d, for a degree parameter d given as
additional input to KGen, is a polynomial commitment scheme. Besides correctness , a commitment scheme
CS satisfies two more properties.

Definition 5 (Binding). A commitment scheme CS is (computationally) binding if no PPT adversary can
find, unless with negligible probability, a commitment C, two messages m ↗= m

→ and two openings o, o
→:

VerCom(ck,C,m, o) = VerCom(ck,C,m→
, o

→) = 1

Definition 6 (Hiding). A commitment scheme CS is (computationally) hiding if ↖m,m
→, ↖ck:

{C : (C, o) ↑ Com(ck,m)} ⇓ {C→ : (C→
, o

→) ↑ Com(ck,m→)}

In contrast, perfect hiding/binding strengthens this guarantee by requiring security even against unbounded
adversaries.

Trapdoor Commitment Schemes. In some applications, one further requires the trapdoor property for com-
mitment schemes [GKS24]. That is, we require the existence of three additional PPT algorithms (tdKeyGen,
tdComm, tdOpen). The first outputs (ck, td) ↑ tdKeyGen(1ϑ), where ck is a commitment key indistinguish-
able from an honestly generated key, and td is a commitment trapdoor. The second algorithm outputs
(C, st) ↑ tdComm(td), where C is a commitment and st is a piece of side information. The third outputs a
commitment opening o ↑ tdOpen(C,m, st, td). The requirement is that o can be used to open C to value
m without triggering a rejection, for any message m of our choice. A trapdoor commitment is said to
be ↽-equivocable if the statistical distance between a honestly generated commitment key, commitment, and
opening, and an analogous triple generated by (tdKeyGen, tdComm, tdOpen) is at most ↽. We refer to [GKS24]
for a formal definition.

Pedersen Commitment Scheme. We mostly rely on the Pedersen commitment scheme [Ped92] with message
space Zn

p
, for some n → N, over some group G, that is computationally binding under the DL assumption

and perfectly hiding, and works as follows:

– KGen(1ϑ) outputs n+ 1 random generators g1, . . . , gn, h of G.
– Com(ck,a;↼) parses ck as (g1, . . . , gn, h) and outputs the commitment C :=


i↔[n] g

ai
i
h
ϖ and the opening

↼.
– VerCom(ck,C,a, o) outputs 1 if and only if Com(ck,a; o) = C.

The Pedersen commitment can be e"ectively used as a polynomial commitment scheme. In particular, we de-
fine Com(ck, f(X)) := Com(ck, (fi)i↔[0,d]) as the commitment to (the coe!cients of) a univariate polynomial
f(X) :=

∑
d

i=0 fiX
i of degree d. In addition, the Pedersen commitment scheme is a is perfectly equivocable

(i.e., with factor ↽ = 0) trapdoor commitment scheme if endowed with the following extra algorithms:

– tdKeyGen(1ϑ): sample e1, . . . , en, ⇀ ↑$ Zp. Set gi = g
ei for all i → [n], and h = g

ϱ. Output ck =
g1, . . . , gn, h and td = e1, . . . , en, ⇀.

– tdComm(td): sample r ↑$ Zp. Output (gr, r).
– tdOpen(C,a, td): solve the linear equation ⇀↼ +

∑
n

i=1 eiai = r. Return ↼.

3.2 Threshold Signatures

A threshold signature scheme enables a group of n signers to collaboratively generate a signature on a given
message m. The scheme is parameterized by a threshold t < n that dictates the minimum number of signers
required to jointly produce a valid signature. Another relevant parameter is the number of interaction rounds
k, which directly impacts the scheme’s e!ciency. We follow the definition from [BDLR25b] but for the case
k = 2, as it aligns with our scheme, though the definition extends naturally to arbitrary k.

Formally, a 2-round threshold signature scheme is a tuple of algorithms TS = (Setup,KeyGen, SR1, SR2,

SignAgg,Verify) such that:
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– pp ↑ Setup reads a pair (t, n) and outputs public parameters pp. The latter are used throughout the
rest of the protocol and, unless otherwise specified, should be implicitly assumed to be an input to all
subsequent algorithms.

– (pk, {(sk
i
, pk

i
)}i↔[n]) ↑ KeyGen(pp) is the key generation algorithm. It outputs a global public key pk, n

public key shares {pk
i
}i↔[n] and n secret signing key shares {sk

i
}i↔[n].

– pm1,i ↑ SR1(ski, pki, pk, S, i,m) is the first signing round. It reads a signing key share sk
i
, public key

share pk
i
, public key pk, signing set S, index i → [n], and message m. The output is a protocol message

for the i-th signer pm1,i.
– si ↑ SR2(ski, pk, S, i, {pm1,i}i↔S ,m) is the second signing round. It reads a signing key share sk

i
, public

key pk, signing set S, index i → [n], the set of all previous-round messages {pm1,i}i↔S , and message m.
The output is a signature share si.

– ω ↑ SignAgg({si}i↔S) is the aggregation phase, whose goal is to combine partial signatures into a unique
global signature. It reads partial signatures {si}i↔S and outputs global signature ω for message m.

– 0/1 ↑ Verify(pk,m,ω) is the verification procedure. It reads a public key pk, a message m, and a signature
ω. It then outputs a binary flag b → {0, 1}, indicating the signature is invalid or valid, respectively.

A threshold signature scheme provides correctness if signatures generated by an honest signing coalition
of size at least t are accepted by Verify, as described in the following game:

1. Generate pp and all keys honestly.
2. Read a signing set S and a message m.
3. Execute all phases honestly, obtaining signature ω.
4. Output Verify(pk,m,ω).

We require that for any n, t < n, set S ↙ [n] with |S| ↔ t, the output is 1 with overwhelming probability (in
the security parameter).

Unforgeability. Several threat models for threshold signatures have been considered in the literature. In this
work, we assume an adaptive adversary A who can dynamically choose to corrupt new parties [CKM23,
BDLR25b]. In addition, A may start multiple signing sessions in parallel. As usual when dealing with
signatures, A’s goal is (informally) to generate a new pair (m→

,ω
→) such that m

→ is a fresh message and on
input (m→

,ω
→) the output of Verify is 1. In this context, “fresh” should be interpreted as not in the set of

signing queries submitted by A. The formal definition of unforgeability against adaptive adversaries is more
cumbersome and requires a dedicated security game. We adapt the definition of [CKK+25b] to our purposes.
Figure 2 provides a full description of all the involved oracles and procedures. In our security game, A is
given access to three oracles:

– A corruption oracle OCorr. On input i → [n], the oracle corrupts the i-th signer. This instantly lets A
read its private information and control its future actions. To comply with the threshold requirement, A
is allowed to submit at most t↓ 1 corruption requests.

– A signing round oracle OSR1. Upon receiving a call from A, it executes the first signature round. A must
specify some core parameters, such as the desired session, round, and honest signer to interact with. The
oracles returns the corresponding first round message pm1,i to A.

– Another signing round oracle OSR2, which executes the second signing round upon receiving a request
from A. The oracle returns a partial signature si to A.

A submits as many queries as it wants to its oracles, and finally outputs a pair (m→
,ω

→). The game models
existential unforgeability under a chosen-message attack, so its outcome is defined as Verify(pk,m→

,ω
→)⇐(m→

/→
Q) with ⇐ denoting boolean AND, and (m→

/→ Q) denoting a boolean predicate for set membership. As
customary, we call a scheme unforgeable if for any PPT adversary A and any (n, t) → N with t < n

AdvtsaufTS,A(φ) = negl(φ).
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TSAUFTS,ω,t
A

1 : pp ↑ Setup(t, n)

2 : (pk, {pki, ski}i↓[n]) ↑ KeyGen(pp)

3 : CS ↑ ↓, HS ↑ [n]

4 : Q ↑ ↓
5 : OAll ↑ (OCorr,OSR1,OSR2)

6 : (m→
,ω

→) ↑ AOAll(pk, {pki}i↓[n])

7 : return (m→
/↔ Q) ↗ Verify(pk,m→

,ω
→)

OSR2(S,m, i, {pm1,j}j↓S)

1 : if i /↔ (S ↘HS) ≃ S ⇐⇒ [n] :

2 : return ⇑
3 : inp ↑ (sk

i
, pk

i
, pk, S, i, {pm1,j}j↓S ,m)

4 : si ↑ SR2(inp)

5 : return si

OCorr(i)

1 : if |CS| ⇓ t→ 1 ≃ i /↔ [n]

2 : ≃ i ↔ CS : return ⇑
3 : CS ↑ CS ⇔ {i}
4 : HS ↑ HS \ {i}
5 : return sk

i

OSR1(S,m, i)

1 : if i /↔ (S ↘HS) ≃ S ⇐⇒ [n] :

2 : return ⇑
3 : pm1,i ↑ SR1(ski, pki, pk, S, i,m)

4 : Q ↑ Q ⇔ {m}
5 : return pm1,i

Fig. 2. The adaptive unforgeability security game.

Proactively Refreshable Threshold Signatures. The previous unforgeability definition is arguably the most
traditional one. In this work, we put forth a slightly di"erent notion of unforgeability for threshold signatures,
in which periodic key refreshments are possible. Intuitively, we perform period key refreshments that update
partial public and secret keys, and ensure that the scheme remains unforgeable. We follow the approach
of [BPR22], but adapt it to our setting. We say a threshold signature scheme supports proactive key refresh
with d messages if (in addition to the algorithms already provided by the threshold signature scheme, and an
updated Setup that takes d as additional input) there exist two algorithms, (Updatesk,Updatepk), such that:

– (sk→
i
, ⇁i) ↑ Updatesk(ski) reads the i-th partial secret key sk

i
, and outputs an updated secret key sk→

i
as

well as an update token ⇁i. sk→i replaces sk
i

as the secret key of signer i. ⇁i is then shared with all the
other signers. Each signer must run it once at the end of each epoch.

– pk→
j
↑ Updatepk(pkj , ⇁j) reads the j-the partial public key pk

j
and an update token ⇁j . It verifies its

validity, and eventually updates pk
j

to a new pk→
j
. Each signer i must run Updatepk for each other signer

index j at the end of each epoch.

In light of this, we slightly modify the adversarial model of Figure 2 to encompass schemes with updates.
We provide the formal security game for unforgeability with proactively refreshable keys in Figure 7 in
Appendix B. In the unforgeability game with proactive key refresh, each signer i holds a local view of all the
public keys owned by all the other signers, represented by the data structure pkArr

i
[·]. This change is due

to the fact that signers independently verify the update tokens and possibly reject them. We now provide A
access to an update oracle OUpdate, which triggers a key update. When querying OUpdate, A must input
a set of malicious update tokens, which are submitted to other signers for verification. Honest signers must
also refresh local keys, generate honest update tokens, and update their view of public keys based on the
incoming tokens. Each call to OUpdate triggers a transition from one epoch to the next. The security game
uses a counter ctr to track the number of signature queries per epoch, and resets it after each update. To
win the game, A should still output a forgery, but must do so by making no more than d queries per epoch.

Our model is not intended to address (nor should it be confused with) traditional definitions of refreshable
signatures [HJJ+97, KGG24, CGG+20]. The latter often deal with a mobile adversary that can periodically
change the corruption set and do not impose restrictions on the number of signatures per epoch. Our model,
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on the other hand, aims to upgrade the standard TSAUF by allowing updates to parts of the secret and
public keys and by replacing exhausted entropy sources with fresh ones.

4 Protocol Description

In this section, we describe our two-round threshold Schnorr signature scheme in greater detail. For a high-
level overview, we refer to Section 2.3.

Building Blocks. Our scheme is based on the interplay between several building blocks, namely:

– Random oracles HSig,Hf ,H0,H1, of which HSig and Hf map from {0, 1}↑ into Zp, and H0,H1 map from
{0, 1}↑ into G.

– A polynomial commitment scheme CS = (KGen,Com,VerCom) for polynomials in Zp[X].
– A NIZK ! = (Setup,P,V) for the join4 relation R defined as

R := {(opn, ), : ( , ) → Ropn} ⇐ {(evl, ), : ( , ) → Revl}.

The relation Ropn is defined as

Ropn :=


= (ck, g, h, v,Cf ,C, i,d)
= (f, ⇀f)

: Cf = Com(ck, f; ⇀f)


.

Looking ahead to our proof, proofs over the relation Ropn will allow us to extract the updated signing
key (aka fresh polynomials) from the adversary after a key update. The relation Revl is parametrized by
random oracles H0,H1 and is defined as

Revl :=






= (ck, g, h, v,Cf ,C,d, R,ς)
= (f, ⇀f , x, u, w)

:

Cf = Com(ck, f; ⇀f),
C = g

x
h
w
v
u
,

R = (grH0(d)wH1(d)u)ς

r = f(Hf(d))





.

Looking ahead to our proof, proofs over the relation Revl will guarantee that the random commitments
R sent by the adversary are well-formed w.r.t. our protocol description, i.e., the random element r was
obtained by evaluating a polynomial f committed into the commitment Cf , and R was computed using
r, public bases, and the secret key parts w and u, that are committed in the commitment C (aka, the
partial public key). We say that a statement of the form = (evl, →) (resp. (opn, →)) is an evl-instance
(resp. opn-instance) of the join relation R.

Setup. To set up our scheme for parameters (t, n, d), we select a public cyclic group G of prime order p and
generator g. We further sample two group elements h, v ↑$ G, whose discrete logarithm in base g should be
unknown. We select four hash functions HSig, Hf , H0, and H1. The first two map arbitrary bitstrings into
Zp scalars, while the latter two map arbitrary bitstrings into G. We model all of them as random oracles.
Then, we sample a commitment key ck for the polynomial commitment CS. This setup allows a t-out-of-n
threshold signature scheme with up to d messages signed before a partial public key refresh (c.f. Section 2.3).

4 The relation Ropn is only needed to manage key updates, hence could be safely ignored for scenarios with a bounded
number of signatures. Moreover, the reason why we opt for a single NIZK instead of one for each relation is rather
technical and has to do with the security guarantees we require from the composition, as we elaborate in Section 4.1.
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Setup(n, t, d)

1 : (G, p, g) ↑ G ; h, v ↑$ G
2 : HSig,Hf : {0, 1}↔ ↖ Zp

3 : H0,H1 : {0, 1}↔ ↖ G

4 : ck ↑ CS.KeyGen(1ω)

5 : pp ↑ (n, t, d, (G, p, g), h, v)

6 : pp ↑ pp ⇔ (HSig,H0,H1,Hf , ck)

7 : return pp

KeyGen(pp)

1 : // w and u have null constant terms

2 : x(X), w(X), u(X) ↑$ Zp[X](t)

3 : pk ↑ g
x(0)

h
w(0)

v
u(0); pk ↑ pk

4 : for i = 1 to n do

5 : xi ↑ x(i) ; wi ↑ w(i)

6 : ui ↑ u(i) ; fi ↑$ Zp[X](d)

7 : Ci ↑ g
xih

wiv
ui

8 : Cfi ↑ CS.Com(ck, fi;εfi)

9 : pk
i
↑ (Ci,Cfi)

10 : sk
i
↑ (xi, wi, ui, fi,εfi)

11 : return (pk, {pk
i
, sk

i
}ni=1)

Lagrange(S, i)

1 : return
∏

j↓S\{i}

j/(j → i)

SignAgg(pk, {Ri}i↓S , {si}i↓S , S,m)

1 : pk ↑ pk; R ↑
∏

i↓S

Ri; s ↑
∑

i↓S

si

2 : return (R, s)

Verify(pk,m,ω)

1 : (R, s) ↑ ω; c ↑ HSig(pk, R,m)

2 : return (gs
?
= R · pkc)

CheckConsistd(i,d)

1 : Parse{pk
i
}i↓S from d

2 : for j ↔ S :

3 : if pkArr
i
[j] ⇐= pk

i
: return ⇑

SR1(ski, pki, i, pk, S,m)

1 : (xi, wi, ui, fi,εfi) ↑ sk
i

2 : d ↑ (m,S)

3 : CheckConsistd(i,d)

4 : ri ↑ fi(Hf(d))

5 : ϑi ↑ Lagrange(S, i)

6 : Ri ↑
(
g
riH0(d)

wiH1(d)
ui

)
εi

7 : ϖi ↑ !.P((evl, pk
i
,d, Ri,ϑi), ski)

8 : return (Ri,ϖi)

SR2(ski, i, pk, S, {Ri}i↓S , {ϖi}i↓S ,m)

1 : (xi, wi, ui, fi,εfi) ↑ sk
i
; d ↑ (m,S)

2 : CheckConsistd(i,d)

3 : for pk
j
↔ S \ {i} do

4 : if !.V((evl, pk
j
,d, Rj ,ϑj),ϖj) = 0 :

5 : return ⇑

6 : R ↑
∏

i↓S

Ri; c ↑ HSig(pk, R,m)

7 : ϑi ↑ Lagrange(S, i)

8 : ri ↑ fi(Hf(d)); si ↑ (ri + cxi)ϑi

9 : return si

Updatesk(ck, ski)

1 : (xi, wi, ui, fi,εfi) ↑ sk
i

2 : f→i ↑$ Zp[X](d) ; εf→i
↑$ Zp

3 : Cf→i
↑ Com(ck, f→i;εf→i

)

4 : ϖ
→
i ↑ P((opn,Cf→i

), (f→i,εf→i
))

5 : sk→
i
↑ (xi, wi, ui, f

→
i,εf→i

)

6 : return (Cf→i
,ϖ

→
i, sk

→
i
)

Updatepk(pkj ,Cf→j
,ϖ

→
j)

1 : (Cj ,Cfj ) ↑ pk
j

2 : if !.V((opn,Cf→j
),ϖ→

j) :

3 : pk→
j
↑ (Cj ,Cf→j

)

4 : else return ⇑
5 : return pk→

j

Fig. 3. Our two-round threshold Schnorr signature scheme. The signer set S contains the partial public keys of all
signers involved in a signing operation. We abuse the notation of this set and also just select the indices of these
signers whenever needed. We mark the optional key-update algorithms in a dashed box.
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Key Generation. Key generation begins by constructing the joint public key pk and then distributing the
corresponding signing key among the signers. We sample three random polynomials x, u, w ↑$ Zp[X](t) of
degree t, with u and w chosen uniformly from the set of polynomials with zero constant term. The global
public key is set to pk = g

x(0)
h
w(0)

v
u(0) = g

x(0).
For each signer i → [n], we evaluate the polynomials at i to obtain xi = x(i), wi = w(i), and ui = u(i). We

then sample a uniformly random polynomial fi → Zp[X](d) of degree d and commit to it using the polynomial
commitment scheme CS, obtaining Cfi ↑ CS.Com(ck, fi; ⇀fi) for uniformly random ⇀fi . The partial public
key of signer i is pk

i
= (Ci,Cfi) with Ci = g

xih
wiv

ui , and the partial signing key is sk
i
= (xi, wi, ui, fi, ⇀fi).

For the ease of readability, we denote sampling of the polynomial via fi ↑$ Zp[X](d), and assume that the
signer stores all polynomial coe!cients. However, we can replace this directly with an on-the-fly sampling
method [BDK+18] in which a signer would just store a uniformly random key kRO,i and sample the polynomial
coe!cients via ai,j = RO(kRO,i, j) whenever the polynomial needs to be evaluated (c.f. Section 2.3).

First Round. In the first round, we deterministically derive the signing nonces Ri. As a basis for the signing
rounds serves the session identifier d ↑ (m,S). Here, m denotes the message to be signed and S contains
the combined public key pk, as well as all partial public keys of all signers (at least t) involved in the signing
operation. We want to emphasize that by this choice, all signing queries on the same d result in the same
signature. In addition, when the partial public keys are updated, the signer set S is also updated, thus
leading to a fresh session identifier. While S contains the partial public keys, we will abuse notation and
also assume that we can simply iterate over the indices of participating signers when iterating over S. Each
active signer evaluates the polynomial fi over input Hf(d) → Zp, obtaining a scalar ri → Zp. It then computes
the Lagrange coe!cient ςi corresponding to the own index i and the signer set S, and the partial nonce

Ri =

g
riH0(d)

wiH1(d)
ui
ςi

,

where ri = fi(Hf(d)), and wi, ui are parts of the partial signing key. Furthermore, each signer i computes a
non-interactive zero-knowledge proof ϱi, showing the well-formedness of the nonce Ri w.r.t. the evl-statement
consisting of the partial public key pk

i
, the session d, the random nonce Ri, and the Lagrange coe!cient ςi,

and the witness being signer i’s signing key sk
i
. Note that this statement-witness pair matches the description

of the relation Revl, since the partial keys sk
i

and pk
i

contain all the required elements. We provide details
on how we instantiate this NIZK in Section 4.1. Finally, each signer outputs the pair (Ri,ϱi).

Second Round. Upon receiving the nonce-proof pairs {(Rj ,ϱj)}j↔S of all other involved signers, signer i

verifies all the well-formedness proofs by computing !.V((evl, pk
j
,d, Rj ,ςj),ϱj), and aborts if any nonce is

not well-formed. Upon successful verification of all nonces, signer i aggregates the partial nonces into the
combined nonce R =


i↔S

Ri and computes the random challenge c ↑ HSig(pk, R,m). Finally, it outputs its
partial signature si = (ri + cxi)ςi. We want to emphasize that the partial signing randomness ri does not
need to be stored between rounds, but can be recomputed by signer i through evaluating fi on input Hf(d).
This holds, since ri is deterministically derived. From an implementation viewpoint, this allows our protocol
to be stateless across rounds.

Signature Aggregation and Verification. Once a signer receives all partial signatures, the final signature
consists of a pair ω = (R, s), with R defined as above, and s being the sum of all partial signatures s =∑

i↔S
si. The verification procedure is identical to a standard Schnorr signature verification. That is, one

computes c = HSig(pk, R,m) and checks that pkc ·R = g
s.

(Optional) Key Update. To update the polynomial commitment included in the partial public keys, each
signer i samples a fresh uniformly random polynomial f →

i
↑$ Zp[X](d) of degree d, and commits to this

polynomial via Cf→i
↑ Com(ck, f →

i
; ⇀f→i) using a fresh randomness ⇀f→i

. Then, each signer proves knowledge
of f →

i
via ϱ

→
i
↑ P((opn,Cf→i

), (f →
i
, ⇀f→i

)), updates it’s signing key sk→
i
↑ (xi, wi, ui, f →i, ⇀f→i) to contain the fresh

polynomial, and the fresh commitment randomness, and sends the pair (Cf→i
,ϱ

→
i
) as update token to each

other signer j. Upon receiving an update token from another signer, each signer verifies the proof ϱ→
j

w.r.t.
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the fresh commitment Cf→j
and updates the corresponding partial public key pk

j
= (Cj ,Cfj ) to now contain

the fresh polynomial commitment, i.e., pk
j
= (Cj ,Cf→j

).
We stress that the update mechanism does not require global synchronization or long-term state. Each

signer can decide independently when to refresh its token, and we make no assumption that corrupted parties
ever perform an update. In particular, an honest party can rotate its polynomial by simply broadcasting
a fresh token; verification by others is one-sided and does not require a round-trip exchange. This makes
the update process closer to a lightweight gossip mechanism than a coordinated protocol step. In practice,
the parameter d can be chosen by each signer individually, and even large enough that it su!ces for honest
parties to refresh their polynomial on a fixed schedule, e.g., daily or weekly, while still ensuring adaptive
security for all signatures within the epoch. This approach allows having full adaptive security even without
tracking how many signatures have been signed so far.

Argument of Correctness. Intuitively, correctness follows from the fact that the polynomials w and u have
zero constant term, and thus vanish at the origin. As a result, their contributions in the aggregated nonce
cancel out, leaving only the g

r term. The aggregated partial signatures then reduce to (gr, r+ c x(0)), which
satisfies the standard Schnorr verification equation for the public key pk = g

x(0). We provide a detailed
argument of correctness in Appendix D.1.

Fully-Adaptive Unforgeability. We now state the security of our construction, discuss practical instantiations
for the proof systems in Section 4.1, and provide a formal proof of Theorem 1 in Section 5.

Theorem 1 (Main). Let G be a cyclic group, CS be a perfectly hiding, computationally binding trapdoor
polynomial commitment scheme, ! be a simulation extractable zero-knowledge proof system for the join
relation R, and HSig,Hf ,H0,H1 be hash functions modeled as random oracles. If DDH is hard in G, our two-
round threshold Schnorr signature scheme over G (Figure 3) is unforgeable w.r.t. a fully-adaptive adversary.

4.1 Instantiating the Proof System

In Theorem 1, we claim that our threshold signature scheme is fully-adaptively secure if there exists a per-
fectly hiding, computationally binding trapdoor polynomial commitment scheme, together with a simulation-
extractable zero-knowledge proof system for the join relation R. Before proving the security of this theorem,
we first provide concrete instantiations of these primitives and show that, based on these choices, our protocol
is both e!cient and provably secure under the Decisional Di!e-Hellman (DDH) assumption in the random
oracle model. We begin by examining the join relation R in detail, as it determines the structure of the proof
statements required in our protocol. We then discuss the selection of a suitable proof system that satisfies
our security requirements while enabling e!cient implementation under reasonable assumptions. Finally, we
describe explicit instantiations for proving R.

The join relation R. We use a single NIZK ! for the join relation R, rather than two di"erent schemes
!opn and !evl. The main reason for this choice has to do with the security guarantees we require from
the composition of proofs. Roughly, we would need !opn to be simulation-extractable even in presence of
simulated proofs for !evl since these proofs possibly provide additional information that may interfere with
the security guarantees for the former scheme: hence, even if we instantiate !opn with a simulation-extractable
scheme, this may be insecure when used in combination with other proof systems (see [FFK+23] for a similar
issue).

It is worth noticing that it is possible to e!ciently and naturally instantiate ! from two distinct NIZKs,
!opn and !evl, as long as both these schemes are simulation-extractable with respect to a trapdoorless zero-
knowledge simulator, i.e., the zero-knowledge simulator does not rely on any trapdoor but only leverages the
ability to control/program the random oracle. Intuitively, this property allows us to reduce the security of
the join scheme to the security of either scheme by locally simulating the proofs for the other one, without
any concrete interference, due to the domain separation o"ered by the random oracle. We refer to [CFR25]
for an in-depth overview of these techniques and for a general composition framework in the context of
simulation-extractable schemes.
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A suitable proof system. A line of works [GM17, FFK+23, KPT23, DG23, FFR24, CFR25] has shown that
many general-purpose zkSNARKS, including (possibly slight variants of) Plonk [GWC19], Marlin [CHM+20],
Lunar [CFF+21], Basilisk [RZ21], and Spartan [Set20], are simulation-extractable, and thus would be su!-
cient for our protocol. However, they usually require representing the relation in some intermediate format
such as R1CS or Plonkish. Moreover, for some of these schemes, we only know they are secure under stronger
security assumptions, such as the AGM [FKL18] or some knowledge assumptions, or their most e!cient con-
structions require an additional trusted setup, which we would like to avoid.

Luckily for us, when we use the Pedersen (polynomial) commitment scheme, both Ropn and Revl can be
instantiated e!ciently with transparent schemes, in particular relying on the zero-knowledge commit-and-
prove inner-product argument (IPA) at the core of Bulletproofs [BBB+18] and Hyrax [WTs+18], which is
logarithmic in the size of the witness (the committed polynomial). Moreover, this scheme is simulation-
extractable with respect to a trapdoor-less zero-knowledge simulator, in the ROM, under the discrete log-
arithm (DLog) assumption [DG23, CFR25]. Since DLog is implied by DDH, this choice of a proof system
does not add additional assumptions to our protocol.

Instantiations. We now give a detailed overview of how the inner-product argument is used to prove the join
relation R. For clarity, we first describe the (sub)protocols in this section as interactive arguments between a
prover P and a verifier V, where the verifier’s messages are sampled uniformly at random from a prescribed
domain. By applying the Fiat–Shamir transform, we can compile these arguments into non-interactive proofs
in the random oracle model, with P and V given black-box access to a random oracle H.

At the core of our instantiation is a zero-knowledge commit-and-prove inner-product argument (IPA) for
the following dot-product relation:

RLogDotPf =




(n, g, gϱ,P,a), (x, y, ⇀p) : P = g
y

0 ·
∏

i↔[n]

g
xi
i

· gϱp
ϱ
, y = ∝x,a′






Here, (g, gϱ) are Pedersen commitment generators, P is a Pedersen commitment to (y,x) with opening ⇀p,
and a is a public vector. We use this relation to prove the correct evaluation of a polynomial given only
(hiding) Pedersen commitments to the polynomial coe!cients x and to the evaluation output y.5 In the
public statement of RLogDotPf , we include the dimension n (corresponding to being the polynomial degree,
i.e., n = d + 1), the Pedersen generators (g, gϱ), the commitment P, and the Vandermonde vector a of the
evaluation point z. The witness consists of the polynomial coe!cients x, the evaluation result y, and the
commitment opening ⇀p. The relation asserts that y is indeed the correct polynomial evaluation and that P
is a valid commitment to (y,x) under opening ⇀p. We choose this dot-product formulation because it admits
an e!cient, logarithmic-size proof in the random oracle model based on the discrete logarithm assumption,
as we formalize hereafter.

Lemma 1 ([CFR25]). There exists a logarithmic-size dot-product argument LogDotPf for the relation
RLogDotPf that is simulation-extractable in the ROM under the discrete logarithm assumption.

Instantiating Ropn. To prove knowledge of a polynomial f, i.e., to prove the relation Ropn, the verifier chooses
a random challenge point z ↑$ Zq, the prover evaluates y = f(z), and commits to y via Cy = g

y
g
ϱy
ϱ . The

parties then invoke LogDotPf on public input (d+1, g, gϱ,Cf ·Cy, z), with the prover’s witness (f, y, ⇀f + ⇀y),
where ⇀f is the opening for the polynomial commitment Cf .

Instantiating Revl. To prove the well-formedness of a nonce R with respect to a partial public key pk
i
=

(C,Cf) and a session identifier d, the prover P first evaluates r = f(z) with z = Hf(d) and commits to it as
Cr = g

r
g
ϱr
ϱ

. It then proves correct polynomial evaluation using LogDotPf for RLogDotPf on the commitment

5 The connection between the inner product and polynomial evaluation is immediate: for a = (1, z, z2, . . . , zn), the
equality y = ↙x,a∝ corresponds to y = f(z) for the polynomial f(X) =

∑
n

i=0 xiX
i with coe!cients x.
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Cr · Cf . Finally, the prover and verifier run a Σ-protocol for the relation

Rφ = {(Cr, R,C, g, h, v, gϱ, h1, h2, ), (r, ⇀r, u, w, x) :

R = g
r
h
w

1 h
u

2 , Cr = g
r
g
ϱr
ϱ
, C = g

x
h
w
v
u},

which shows that the opening of Cr and the committed (x,w, u) in C correctly explain R as R = (grhw

1 h
u

2 )
ςi

for the Lagrange coe!cient ςi. This proof has logarithmic size in the polynomial degree d, due to the proof
for RLogDotPf . In addition, the sigma protocol adds three G and five Zp elements to this proof (c.f. Figure 8).
We give full protocol details in Figure 8.

5 Security Analysis

In this section, we prove the fully adaptive security of our two-round Schnorr threshold signature scheme
under the DDH assumption. We first present Theorem 2, a simplified form of the main theorem (Theorem 1)
in which the adversary’s number of signing queries is bounded, so no key updates occur. This initial proof
is meant to clearly showcase our new strategy—combining equivocal deterministic nonce derivation with
correlated oracle programming—without the additional complications of key updates. We then move to
Theorem 3, which lifts the restriction on signing queries and allows the adversary to make a polynomial
number of them, leveraging partial-key updates. Here, in addition to the techniques from the simplified
setting, we employ a knowledge extractor to recover the adversary’s updated keys and demonstrate how this
extraction integrates with our rewinding strategy. We defer the outline and proof of Theorem 3 to Appendix
B.

Theorem 2 (2-round Adaptive Security for Bounded Signature Queries). Fix n > t ↔ 1 and a
group description (G, p, g) such that p is a φ-bit prime. Consider an adversary A making at most qs, qSig, q0
and q1 queries to OSR,HSig,H0 and H1, respectively. Furthermore, suppose that the adversary makes no more
than qf calls to Hf , and no more than d+ 1 calls of the form OSR(1, ·, ·, ·, i) for each i → [n].

If A has an advantage of ↽TSAUF = Advtsauf2RTSch,A(φ) there exists a PPT algorithm CDL having an advantage
of AdvdlCDL

such that

↽TSAUF ≃ qSig

p
+

qSig · AdvdlCDL

(φ) +
q
2
f + q

2
0 + q

2
1

p
+ Advsfzkp!,Bsfzkp

(φ)

+ qs · Advss!,Bss
(φ) +

qs · qSig
p

+ AdvddhBDDH
(φ) +

1

p
,

for some PPT algorithms Bsfzkp,Bss, and BDDH. The first two are PPT adversaries against the zero-knowledge
and soundness of ! respectively, and the last one is a PPT adversary against the DDH game.

Proof Overview. The goal of our proof is to reduce the fully adaptive unforgeability of our two-round Schnorr
threshold signature scheme to the hardness of the discrete logarithm problem (DLog). At a high level, our
approach is to solve DLog by exploiting the special-soundness property of the Σ-protocol underlying Schnorr
signatures [Sch90, CDS94]. Concretely, given two Schnorr signatures s = c · sk + r and s

→ = c
→ · sk + r

that use the same nonce R = g
r but have distinct challenges c ↗= c

→, we can extract the secret key as
sk = (s↓ s

→) · (c↓ c
→)↓1

.

To recreate this extraction in the security proof, we rely on the popular forking lemma of Bellare and
Neven [BN06]. Intuitively, in our proof, we consider an adversary that produces a single valid signature forgery
on a random nonce R. We then rewind this adversary and execute it again with a slight change in its sequence
of random oracle responses. The forking lemma guarantees that, with “good” probability, the adversary will
forge again, and the two forgeries will share the same nonce R while di"ering in their challenges (since we
changed the random oracle responses at some point). Moreover, it provides a quantitative bound relating this
probability to the original success probability of the forger. With some additional postprocessing–discussed
later–this allows us to construct a DLog adversary CDL.
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In our reduction, we do not directly plug A into the forking construction. Instead, we first define a
sequence of security games Game0,Game1, . . . where Game0 = TSAUF and each Gamei introduces only
minimal changes compared to its predecessor Gamei↓1, while remaining provably indistinguishable from it
from A’s perspective. We establish this indistinguishability under our stated assumptions, all of which follow
from the DDH assumption. At the start of this sequence, we instantiate the fully adaptive unforgeability
game with our signature construction. As we progress through the game hops, we incrementally “rig” the
signing keys (cf. Section 2.1), derive nonces in a deterministic yet equivocable manner, and ensure that the
adversary’s interaction follows our intended protocol. In the final game, we construct a wrapper adversary
B that internally runs A and perfectly simulates the game’s oracles until A outputs a forgery. This wrapper
B is precisely the forger required by the forking construction. By running and rewinding B (and thereby A)
with a slight change in randomness, we obtain two valid forgeries on the same nonce with “good” probability,
enabling us to solve DLog. Since the discrete logarithm problem is assumed to be hard, no such adversary
can exist, and our scheme is therefore fully adaptively secure.

We conclude the overview by explaining how the DLog challenge is embedded into our threshold protocol.
Let (G, p, g) be the target group description. Given a challenge X ↑$ G, the reduction CDL embeds it into
the protocol by using X as the second generator h. Specifically, upon receiving X, CDL samples εv ↑$ Zp

and sets the public key generators to (g, h, v) =

g,X, g

ωv


in both internal executions of B. This embedding
requires a slight adjustment to the post-processing to extract the DLog of X. I.e., CDL first rewinds B to
learn the signing key sk, then exploits the fact that the signing key sk is “rigged” in the final game (i.e.,
sk = x+ εh + εv · u for known εv, x, u), to learn the DLog of X (i.e. εh) when sk is known. A rigorous and
extended development of the aforementioned high-level idea can be found in Appendix A.

6 Practical Deployment

To demonstrate deployability, we implemented and benchmarked our equivocable deterministic nonce deriva-
tion from polynomials and the accompanying proofs of well-formedness. These operations account for the
main computational e"ort in our two-round threshold Schnorr protocol. Our prototype builds on standard
primitives: group operations are instantiated over Ristretto255 and well-formedness is ensured using Bullet-
proofs. For the latter, we rely on the existing inner-product argument implementation in the bulletproofs
crate, already optimized for Ristretto255, which allows us to reuse well-established components rather than
engineering a new proof system from scratch. Our prototype implementation is available at github.

Benchmarks. We benchmarked both proving and verification for nonce derivation (i.e., round one of our
signature scheme), as well as the computation and verification of update tokens, on an Apple M3 Pro
with 36GB RAM. For small instances, proving and verification are fast, taking about 1.6ms and 0.6ms,
respectively, at d = 16. At medium size, d = 1024, runtimes grow to 66ms for proving and 13ms for
verification, while at the largest tested scale, d = 16,384, proving completes in about 984ms and verification
in 186ms. Verification is consistently about 5–7∞ faster than proving, and can also be batched using standard
techniques, further reducing amortized cost [BBB+18]. The remaining computation costs of our scheme (i.e.,
computing the partial signature and combining partial signatures) are on the order of microseconds, and are
therefore negligible.

Standards compliance. Our benchmark confirms that our construction meets the e!ciency requirements
emphasized in NIST IR 8214B [BD22]: we achieve “low latency” (due to two rounds), “small communication”
(succinct protocol messages), and “sustainable throughput” (millisecond computation and verification on
commodity hardware), demonstrating practicality for threshold Schnorr deployment.

Comparison with musig-DN. We further compared our protocol to the deterministic two-round (non-adaptive)
Schnorr multisignature musig-DN [NRSW20], explicitly referenced in the NIST call, running its public im-
plementation [Nic20] on the same machine. The verifiable deterministic nonce computation in musig-DN
takes about 545ms for proving and ⇓ 23ms for verification, which is comparable to our scheme with an
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update after each 8192 signatures (requiring 488ms for proving and 93ms for verification). Our verification
is slower than musig-DN because we use a pure-Rust Ristretto implementation without the highly optimized
multi-scalar multiplication and batch-verification routines available in secp256k1-zkp. Both protocols rely on
Bulletproofs, leading to comparable message sizes.

On-the-fly evaluation. As we discussed in Section 2.3, the secret key size of each signer can be optimized
by deriving the nonce polynomial coe!cients on the fly rather than storing them. We implemented this
derivation using SHA-512 and ChaCha. Compared to plain table lookups (⇓ 1.4µs at d = 16 and ⇓ 0.30ms
at d = 16,384), the on-the-fly method adds only a small overhead: ⇓ 3–6µs at d = 16, ⇓ 0.6–0.9ms at
d = 16,384, and 2–3ms even at d = 65,536. In all cases, the evaluation cost is negligible relative to proof
generation, while eliminating the need to store coe!cient tables and thereby reducing secret key size to
contain just five Zp elements.
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A Proof of Fully Adaptive Unforgeability without Key Updates

We now describe each of the steps introduced in Section 5 in detail, and in the following order: first, we
outline the sequence of games, and prove that each pair of consecutive games is indistinguishable; next, we
cover the B wrapper; finally, we describe the forking construction, its application to obtain CDL, and analyze
its advantage in calculating DLog.

Proof (Proof of Theorem 2). Throughout the following proof, we use the notation Advgame
A (φ) to denote

the advantage of interactive algorithm A (not necessarily equal to the main adversary) in game Game as a
function of the security parameter φ. If Game pertains to the security property of a specific protocol/scheme
Π, we include the latter as a su!x Advgame

↼,A (φ). All the games that we refer to are outlined in the preliminaries,
though sometimes implicitly. For the sake of clarity, we provide a concise summary of the relevant security
games in the following:
– DDH: the game defining the DDH computational assumption, as defined in figure Figure 1.
– DL: the game defining the DL computational assumption, as defined in figure Figure 1.
– sfzkp: the game defining the zero-knowledge property for a proof system !, implicit in Definition 3. A

wins sfzkp if it distinguishes the real world, where it has oracle access to P and H, from the real world,
where it only interacts with S.

– sfext: the game defining the simulation extractability property for a proof system !, implicit in Defini-
tion 4. A wins sfext if it outputs a statement-proof pair ( ,ϱ) that is accepted by V, not in Q, and for
which E does not successfully extract a witness.

– ss: the game defining the simulation soundness property for a proof system !. A wins ss if it outputs a
statement-proof pair ( ,ϱ) that is accepted by V, not in Q, and for which is a no-statement.

Whenever the games are parameterized but the parameters are made explicit, we omit them from the
previous notation. For instance, although DDH and DL are parametrized by (G, g, p) we omit them when
obvious.

Game0. This is the original security game for our signature scheme, following the honest protocol. Let
h := g

ωh and v := g
ωv for some εh,εv ↑$ Z↑

p
. Then h, v, and g can serve as uniformly random generators

sampled by the setup algorithm Setup. In this game, adversary A is granted access to any random oracle
through the standard lazy simulation technique.

We additionally introduce two purely conceptual modifications to the game. First, let (m↑
,ω

↑) denote the
forgery. We assume that A always queries HSig(pk, R,m

↑) prior to producing the forgery. Second, we assume
that A makes exactly t distinct corruption queries. These changes are made without loss of generality and
do not a"ect the advantage of A [BDLR25b]. To see this, we can always construct a wrapper adversary that
internally runs A.6 The wrapper ensures that the query HSig(pk, R,m

↑) is made and it corrupts exactly t

signers before terminating. Then we have

Advtsauf2RTSch,A(φ) = Pr[1 ↑ Game0] = ↽TSAUF.

Game1. In this game, we abort if a collision for Hf occurs. More precisely, the game aborts if there exist two
distinct signing sessions identifiers d1 ↗= d2 submitted by A (at any point during its execution) to Hf such
that Hf(d1) = Hf(d2). This condition is easy to check by using a table Tf such that Tf [d] contains Hf(d) if
d is the identifier of a session triggered by A, and ⇑ otherwise. With a similar strategy, using tables T0 and
T1, we abort if a collision for either H0 or H1 occurs. This game is statistically indistinguishable from the
previous one, and a precise bound can be found by upper-bounding the collision probability. Assuming no
more than qf evaluations of the random oracle, the collision probability for Hf is at most q

2
f
p

. With a similar

analysis, followed by a union bound, the collision probability for either of H0 and H1 is no more than q
2
0+q

2
1

p
,

|Pr[1 ↑ Game0]↓ Pr[1 ↑ Game1]| ≃
q
2
f + q

2
0 + q

2
1

p
.

6 This can be done without a loss of generality, since the reduction knows all signing-key shares independent of how
many corruptions are made.

28



Game2. In this game, we replace the NIZK proofs generated by honest signers in the first round with
simulated ones. That is, we generate ϱi in the first round by making A interact with !.S1 and !.S2 for each
i → HS. Indistinguishability between Game1 and Game2 can be shown by constructing an adversary Bsfzkp

for game sfzkp that internally runs A. Bsfzkp receives public parameters from !.Setup and simulates the rest
of the game towards A. Notice that Game1 and Game2 are identical except for the way in which NIZKs
are generated, and thus the expression “rest of the game” (without specifying an index) is well-defined. In
particular, Bsfzkp runs KeyGen honestly, generates all the due keys, and simulates the random oracles and
signing oracles towards A. Bsfzkp queries its pair of oracles, which either equals (!.P,H) or (!.S1,!.S2),
when producing a proof ϱi in the first round, and forwards it to A. Finally, it outputs whatever the game
outcome is. Since Bsfzkp exactly simulates Game1 or Game2 depending on the random bit of the challenger of
the sfzkp game, we obtain

|Pr[1 ↑ Game1]↓ Pr[1 ↑ Game2]| ≃ Advsfzkp!,Bsfzkp
(φ).

Game3. Game3 is identical to Game2 except that the secret nonce ri from honest signer i, which is computed
by evaluating fi(Hf(d)) in Game3, is drawn uniformly at random in Zp and stored in a table Tr(i, ·), where
Tr(i,d) returns the corresponding ri value (this way, the same integer ri is used if signing on d = (m,S)
is called again to signer i). We leverage Lagrangian interpolation to manage adaptive corruptions. That is,
upon corruption of signer i we inspect the content of Tr(i, ·) and run Lagrangian interpolation over it to
reconstruct the fi polynomial. If Tr(i, ·) does not contain enough input-output pairs we append random ones
until we match the desired degree of fi (that is, we must collect d+ 1 pairs). Notice that, assuming every fi
polynomial is evaluated less or equal than deg(fi)+ 1 times, Lagrangian interpolation is always feasible, and
yields a consistent polynomial with probability 1. Furthermore, it is well known that the family of d-degree
polynomials over Zp is (d+1)-wise independent — that is, the first (d+1) evaluations of a random polynomial
look uniformly random and independent.

We introduce further changes concerning the key generation and the polynomial commitment, to enable
opening Cfi to the desired value. We replace the call to CS.KeyGen at the beginning of the game with one
to CS.tdKeyGen. This provides knowledge of the trapdoor td to the challenger before interacting with A.
Furthermore, the polynomial commitments of honest users are generated by honestly committing to 0 (which
for our choice of Pedersen commitments, is equivalent to calling CS.tdOpen). After performing Lagrangian
interpolation as previously described, the challenger leverages td to open Cfi to fi. Assuming a perfectly
hiding commitment with perfect equivocability, this implies perfect indistinguishability of the two games,
that is

Pr[1 ↑ Game2] = Pr[1 ↑ Game3].

Game4. In this game, we compute on our own all the nonce values R
→
i
’s that we expect to receive from the

adversary. That is, we compute for each signing session d = (m,S) all the Ri such that i → CS ∈ S. This
allows us to deduce the aggregate nonce R as


i↔CS↘S

R
→
i
·


i↔HS↘S
Ri, and the value c := HSig(pk, R,m).

Furthermore, both are unique to the signing session identified by (m,S). We check that the nonces Ri’s sent
by the adversary are equal to the expected value R

→
i
. If for some i → CS ∈ S the proof ϱi was valid but

Ri ↗= R
→
i
, the game aborts. Notice that the NIZK’s simulation soundness aims at preventing exactly this

event. More precisely, one can construct an adversary Bss that aims at breaking the simulation soundness of
Π. Bss runs the honest Setup and KeyGen algortihms, thus generating all the signatures public parameters
and secret/public keys honestly. It then simulates Game4 towards A, taking care of the random oracles and
signing oracles as outlined in previous games. Bss waits until A produces an Ri value for some i → CS, and
checks if Ri is a yes-statement. If no, it submits Ri and the corresponding adversarially generated NIZK ϱi

to !.V(evl, ·). The probability that the latter accepts is at most Advss!,Bss
(φ). Let qs be an upper bound to

the number of signing queries. Then, by a union bound

|Pr[1 ↑ Game3]↓ Pr[1 ↑ Game4]| ≃ qs · Advss!,Bss
(φ).

Game5. In this game, we ensure that we can program all random oracles as required by our proof idea. I.e.,
when the adversary queries a signature on a message–signing-set pair (m,S), then this pair can either be
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used as a fresh input to the random oracles, or all random oracles are already programmed consistently, such
that simulating signing does work. This game is particularly required, such that we can perform correlated
random-oracle programming in the games to follow. For this purpose, we introduce two maps ▷ and ⇀, and
number signing sessions using a generic index ◁. Initially, we assume ⇀[d] = 0 by default for all possible d.
For every random oracle query to Hb with input d and b → {0, 1}, we do:

– if Hb(d) = ⇑, then we sample random values ϑ↽, ϖ↽, c↽ ↑$ Zp and program the random oracles as

H0(d) := g
⇀ω ,H1(d) := g

εω ,

We also update the map ▷ as ▷[d] ↑ c↽.
– if Hb(d) ↗= ⇑, we return Hb(d).

Note that we always do simultaneous programming of both the random oracles H0 and H1 upon receiving a
query Hb(d). The c↽ value is used to program HSig. Recall that thanks to our modifications in the previous
game, we can compute the adversarially generated nonces {Rj}j↔CS↘S before receiving them from A. After
determining all the {Rj}j↔HS↘S terms, we can determine the aggregate

R =
∏

j↔CS↘S

Rj ·
∏

j↔HS↘S

Rj ,

which allows us to program HSig(pk, R,m) ↑ ▷[d]. We set ⇀[d] = 1 right after. If HSig(pk, R,m) ↗= ⇑ before
the latter programming attempt, and ⇀[d] = 0, we abort. Conceptually, ⇀ tracks the session identifiers d for
which we explicitly programmed HSig. This is meant to avoid unnecessary aborts if the adversary invokes the
same signing session twice.

Recall the value ▷[d] = c↽ is sampled uniformly at random and independently for each d. Additionally,
since we know that there is at most one {Ri}i↔S set for honest signers after the first round, it implies that
(i) we extract at most one aggregated nonce R, and (ii) we program HSig at most once with a uniformly
random ▷[d].

With this observation, we can now easily bound the probability of aborting. As mentioned above, we
sample the Ri for honest signers after we have computed the nonces Rj from corrupt signers j → (CS ∈ S).
Since the nonces Ri for honest signers are sampled uniformly at random, we know that the aggregated nonce
R will also be uniformly random and hidden from A at the time when we program HSig. More precisely,
because we program before the beginning of round two A has not received the {Rj}j↔HS↘S terms yet.
Therefore, the condition HSig(pk, R,m) ↗= ⇑ can only hold if A correctly guessed R beforehand. The guessing
probability for a single query is 1/p, and by a union bound we get that the abort probability is no more than
qSig/p (where qSig is an upper bound on the number of queries to HSig) for a single signing session. Having
at most qs signing sessions, we get through yet another union bound

|Pr[1 ↑ Game5]↓ Pr[1 ↑ Game4]| ≃
qs · qSig

p
.

Game6. In this game, we change how we program the random oracles H0 and H1. Namely, we first sample
a uniformly random ε ↑$ Zp at the beginning of the game. Then, for every new query Hb(d↽) for either
b → {0, 1}, we sample three random values ϑ↽, ϖ↽, c↽ ↑$ Zp, and then program the random oracles as

H0(d↽) := g
(↓⇀ω+ωh·εω)·ω↑1

v ↓ω·cω ,H1(d↽) := g
εω .

Recall that h := g
ωh and v := g

ωv by definition (see Game0). Again, we update the map ▷ as ▷[d↽] := c↽,
and program HSig as in the previous game. Regarding our game change here, observe that each ϖ↽ is uniformly
random and independently sampled of ε,ϑ↽ and c↽. Further, εv ↗= 0, so that (↓ϖ↽ + εh · ϑ↽) · ε↓1

v
↓ ε · c↽

is also uniformly random and independent of ε,ϑ↽ and c↽. Therefore, A’s view in game Game6 is identically
distributed as its view in game Game5, and we get Pr[1 ↑ Game5] = Pr[1 ↑ Game6].
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Game7. In this game, we change the programmed outputs of H0 and H1 by correlated values. More specifically,
for each query Hb(d↽) for either b → {0, 1} (if not already defined), we program both random oracles H0 and
H1 as before except that we set ϖ↽ := ε ·ϑ↽ instead of a uniformly random ϖ↽. That is, we sample ϑ↽, c↽ ↑$ Zp

and then program
H0(d↽) := g

(↓ω·εω+ωh·εω)·ω↑1
v ↓ω·cω ,H1(d↽) := g

εω .

The indistinguishability between games Game6 and Game7 is proven assuming the hardness of DDH in the
group G. We also rely on the following lemma.

Lemma 2. Let G = ∝g′ be a cyclic group of order p in wihch the DDH assumption holds. Then, the distri-
butions

D0 = (g,εh,εv, {(gεi , g
↓⇀i , ci)}i↔[q]) with






ε ↑$ Zp

(ϑi)i↔[q], (ϖ
→
i
)i↔[q], (ci)i↔[q] ↑$ Zq

p

ϖi = (ϖ→
i
↓ εhϑi)ε↓1

v
+ εci

D1 = (g,εh,εv, {(gεi , g
↓⇀i , ci)}i↔[q]) with






ε ↑$ Zp

(ϑi)i↔[q], (ci)i↔[q] ↑$ Zq

p

ϖi = (ε · ϑi ↓ εhϑi)ε↓1
v

+ εci

are indistinguishable for any εh,εv → Z↑
p
. More precisely, any PPT adversary can distinguish the two distri-

butions with probability at most ↽DDH + 1/p, where DDH is its advantage in the DDH security game.

We defer a formal proof of Lemma 2 to Appendix D. In Game6 we use a sample from the distribution D0

to program the random oracles H0 and H1, whereas in Game7 we use a sample from the distribution D1.
Therefore, the advantage of A in distinguishing between Game6 and Game7 is, informally speaking, upper-
bounded by the advantage of winning the DDH security game. Formally, we can construct an adversary BDDH

that runs A internally, and uses it to beat the DDH game. If we call its advantage AdvddhBDDH
(φ) then

|Pr[1 ↑ Game6]↓ Pr[1 ↑ Game7]| ≃ AdvddhBDDH
(φ) +

1

p
.

Game8. This game is identical to its predecessor, except for the way in which we sample ε (that we first
introduced in Game2). More precisely, we use ε := εh + εvu for some u ↑$ Zp. Since εv ↗= 0 and u

are uniformly random and independent, ε in Game7 is also uniformly random and independent. Therefore,
Pr[1 ↑ Game7] = Pr[1 ↑ Game8].

Game9. In this game, we change how we sample the signing keys. We do so by evolving the signing key poly-
nomials from games Game8 to Game9. More precisely, let (x8(Z), w8(Z), u8(Z)) and (x9(Z), w9(Z), u9(Z)) be
the signing key polynomials in game Game8 and Game9, respectively. Then, in Game9 we sample the signing
key polynomial

x9(Z) := x8(Z) + ε,

with ε defined in the preceding game. The other two signing key polynomials remain unchanged, i.e.,

w9(Z) := w8(Z) and u9(Z) := u8(Z).

Observe that for any fixed ε, since x8(Z) is a random t-degree polynomial, x9(Z) := x8(Z) + ε is a
random t-degree polynomial too. Hence, A’s view in Game9 is identically distributed to its view in game
Game8, and thus,

Pr[1 ↑ Game8] = Pr[1 ↑ Game9].
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Game10. In this game, we change how we sample the signing keys. More precisely, we sample signing key
polynomials such that

x10(Z) := x8(Z), w10(Z) := w8(Z) + 1, u10(Z) := u8(Z) + u,

for the uniformly random u → Zp (introduced in Game8) we used to define ε := εh + εvu.

A key component of our proof is to prove the indistinguishability between A’s view in Game10 and Game9.
Proving this follows the strategies and observations of [BDLR25b, BDLR25a]. We rely on the following
auxiliary lemma on the statistical indistinguishability of independent random variables and their functions.

Lemma 3 ([DR24]). Let (X0, Y0) and (X1, Y1) denote two pairs of random variables. Suppose that for all
0 → {0, 1}, X⇁ and Y⇁ are independent. Furthermore, suppose that X0 ∋ X1 and Y0 ∋ Y1, where ∋ denotes
perfect indistinguishability. Then for any function f

(X0, Y0, f(X0, Y0)) ∋ (X1, Y1, f(X1, Y1)).

Based on Lemma 3, we can show, that the gaps between game Game9 and Game10 vanishes.

Lemma 4. Pr[1 ↑ Game9] = Pr[1 ↑ Game10].

The proof of this lemma follows [BDLR25b, BDLR25a] and we defer it to Appendix D. Combining the
bounds of the above games through a simple triangle inequality, we get

|Pr[1 ↑ Game10]↓ Pr[1 ↑ Game0]| ≃
q
2
f + q

2
0 + q

2
1

p
+ Advsfzkp!,Bsfzkp

(φ)

+ qs · Advss!,Bss
(φ) +

qs · qSig
p

+ AdvddhBDDH
(φ) +

1

p
.

Constructing a wrapper B. At this point, we construct a wrapper algorithm B whose purpose is to run A
inside an environment mimicking the last game. To this end, B must program the random oracles, simulate
corruption and signing queries, and possibly abort exactly as specified in the previous games. As these details
are already implicit in their description, we skip them for the sake of readability, and focus on B’s input.

Formally, B takes as input the public group generators (g, h, v) as well as the three polynomials (x(X),
w(X), u(X)). We further supply B with a stream of independent and identically distributed uniformly random
hashes (h1, . . . , hq) → Zq

p
. Said stream is used to program HSig, and is included to perform forking in the

next step of our proof. B runs A until the latter outputs a forgery (m↑
,ω

↑), with ω
↑ = (R↑

, s
↑), and checks

that (m↑
,ω

↑) is indeed a real forgery. That is, it checks that verification succeeds and m
↑ is not in the set

of previous signing queries. Then, B identifies the element hi of the hash stream such that hi was used to
answer the query HSig(R↑

, pk,m↑). It finally returns (i, s↑) if such an index i exists, or (0,⇑) if no i was
found or if the forgery is not valid. This output’s postprocessing, although perhaps seemingly unmotivated
at first sight, is once again justified by the need to apply the forking lemma.

Constructing a DL adversary CDL. We now leverage the well-known forking lemma by Bellare and Neven [BN06]
to turn B into a DL solver. We first recall the lemma’s statement, and then outline its application for our
purposes.

Lemma 5 (BN Forking Lemma [BN06]). Let q ↔ 1 be an integer. Let A be a probabilistic algorithm that
takes as input a main input inp generated by some probabilistic algorithm InpGen(), elements h1, . . . , hq from
some sampleable set H, and random coins from some samplable set RA, and returns either a distinguished
failure symbol ⇑, or a tuple (f,1), where f → {1, . . . , q} and 1 is some side output. The accepting probability
of A, denoted acc, is defined as the probability (over inp ↑ InpGen(), h1, . . . , hq ↑$ H, and the random coins
of A) that A returns a non-⇑ output. Consider algorithm ForkA

H
as defined in Figure 5, and let frk be the

probability (over inp ↑ InpGen() and the random coins of ForkA
H

) that ForkA
H

returns a non-⇑ output. Then

frk ↔ acc


acc

q
↓ 1

|H|


.
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Algorithm ForkAH(inp)

1 : ϱ ↑$ RA ; h1, . . . , hq ↑$ H

2 : ε ↑ A(inp, (h1, . . . , hq); ϱ)

3 : if ε = ⇑ then return ⇑
4 : (f,ς) ↑ ε

5 : h
→
1, . . . , h

→
q ↑$ H

6 : ε
→ ↑ A(inp, (h1, . . . , hf↑1, h

→
f , . . . , h

→
q); ϱ)

7 : if ε
→ = ⇑ then return ⇑

8 : (f →
,ς

→) ↑ ε
→

9 : if f ⇐= f
→ ≃ hf = h

→
f then return ⇑

10 : out ↑ (hf ,ς) ; out
→ ↑ (h→

f ,ς
→)

11 : return (f, out, out→)

Fig. 5. Forking algorithm ForkAH,R from Lemma 5.

CDL leverages the above lemma to fork B, as detailed in Figure 6. Formally speaking, CDL is a DLog
adversary, and as such it receives a challenge XDL → G whose discrete logarithm in base g it should find. The
core idea is to embed X into the public parameters provided to B. More precisely, CDL samples a random
εv ↑$ Z↑

p
and sets v ↑ g

ωv . It then embeds XDL by setting it to be the h generator (i.e., h ↑ XDL). CDL

also generates the three secret polynomials x,w, u at random, but ensuring that w(0) = 1 and u(0) = u for
a randomly sampled u → Zp. Once all the secret and public parameters and keys are available, CDL runs the
forking construction. This aims at collecting two forgeries from B, to be parsed as (hfsig , s) and (h→

fsig
, s

→),
respectively. At this point, CDL combines them into a DL solution through

εh ↑ (s↓ s
→)/(hfsig ↓ h

→
fsig

)↓ x(0)↓ u(0) · εv.

We formally define CDL in Figure 6.

Algorithm CDL(G, p, g,XDL)

1 : φv ↑$ Z↔
p; (g, h, v) := (g,XDL, g

ϑv )

2 : x(X), w(X), u(X) ↑$ Zp[X](t) s.t. w(0) = 1 ↗ u(0) ↑$ Zp

3 : inpB ↑ ((G, p, g), h, v, x(·), w(·), u(·))

4 : ε ↑ ForkBH(inpB)

5 : if ε = ⇑ then return ⇑
6 : (fsig, out, out

→) ↑ ε

7 : (hfsig , s) ↑ out

8 : (h→
fsig

, s
→) ↑ out

→

9 : φh ↑ (s→ s
→)/(hfsig → h

→
fsig

)→ s(0)→ u(0) · φv

10 : return φh

Fig. 6. Algorithm CDL.
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To convince ourselves that this works, we recall that by construction of B the two outputs out = (fsig, s)
and out

→ = (f →
sig, s

→) satisfy

g
s = R · pkhfsig and g

s
→
= R

→ · pkh
→
fsig ,

where the non-primed values are from the primary execution of B and the primed values are from B’s
second execution. As the two executions of B are identical before the assignments HSig(pk, R,m) = hfsig and
HSig(pk, R→

,m
→) = h

→
fsig

, we have pk = pk→, R = R
→ and m = m

→. Also we have h
→
fsig

↗= hfsig by construction of
Fork.

Therefore, (s ↓ s
→)/(hfsig ↓ h

→
fsig

) is the discrete logarithm of pk. The latter equals g
x(0)

h
w(0)

v
u(0) =

g
x(0)

hv
u(0), which implies that εh = (s ↓ s

→)/(hfsig ↓ h
→
fsig

) ↓ x(0) ↓ u(0) · εv defined above is the discrete
logarithm of h. This computation is successful as long as the forking construction is successful itself. By
Lemma 5, if we call ↽10 the adversary’s winning probability in the last game, and AdvdlCDL

(φ) the DLog
advantage of CDL we get a lower bound

AdvdlCDL
(φ) ↔ ↽10


↽10

qSig
↓ 1

p


.

By reversing the inequality, we derive

↽Game10 ≃ qSig

p
+

qSig · AdvdlCDL

(φ),

which yields the claimed bound when combined with the indistinguishability bound between Game0 and
Game10, as well as the fact that B simulates Game10 towards A perfectly.

Finally, we argue that CDL is e!cient, as claimed. We start by analyzing B. The latter is e!cient by
construction, since all the programming and simulation strategies introduced in our game hops are e!ciently
computable. CDL runs two instances of B according to the forking construction, and performs minimal post-
processing over their outputs. Therefore, it is e!cient too. This concludes our proof. △▽

B Fully Adaptive Unforgeability with Key Updates

In this section, we complete the security definition for fully-adaptive threshold signature unforgeability with
key updates by providing the extended game description of Figure 7, and then prove in Theorem 3 that our
scheme with key updates satisfies it. As hinted before, we upgrade Theorem 2 to the following version, which
encompassess the security of our scheme in presence of updates.

Theorem 3 (2-round Adaptive Security with Updates). Fix n > t ↔ 1 and a group description
(G, p, g) such that p is a φ-bit prime. Consider an adversary A making at most E, qs, qSig, q0 and q1 queries
to OUpdate,OSR,HSig,H0 and H1, respectively. Furthermore, suppose that the adversary makes no more than
qf calls to Hf , and no more than d+ 1 calls of the form OSR(1, ·, ·, ·, i) for each i → [n] per epoch.

If A has an advantage of ↽TSAUF-UP = Advtsauf-up2RTSch,A(φ) there exists a PPT algorithm CDL having an advan-
tage of AdvdlCDL

(φ) such that

↽TSAUF-UP ≃ qSig

p
+


qSig · AdvdlCDL

(φ) +2,

for

2 =
q
2
f + q

2
0 + q

2
1

p
+ Advsfzkp!,Bsfzkp

(φ) + qs · Advss!,Bss
(φ) +

n
2
E

4
· Advsfext!,Bsfext

(φ)

+
nE

2

p
+

qs · qSig
p

+ AdvddhBDDH
(φ) +

1

p

and some PPT algorithms Bsfzkp,Bss, and BDDH. The first two are PPT adversaries against the zero-knowledge
and soundness of !, respectively, and the last one is a PPT adversary against the DDH game.
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From a conceptual viewpoint, the proof of Theorem 3 follows rather naturally from the one of Theorem 2.
Intuitively, the main gap lies in the fact that our update-free reduction knows the secret fi polynomials, but A
could update the fi of corrupted signers to an unknown value. Fortunately, using extractable NIZKs enables
an extraction of the committed polynomial by our reduction, and the proof essentially falls back to the
update-free case. We modify the previous proofs to cover the case of updates. Most of the modifications take
place in the hybrid argument, and they are in turn reflected in the construction of the B wrapper.

TSAUF-UPTS,ω,t
A

1 : pp ↑ Setup(n, t)

2 : (pk, {pki, ski}i↓[n]) ↑ KeyGen()

3 : for i ↔ [n], j ↔ [n]

4 : pkArr
i
[j] ↑ pk

j

5 : CS ↑ ↓, HS ↑ [n]

6 : Q ↑ ↓, SessSet ↑ ↓
7 : ctr ↑ 0

8 : OAll ↑ (OCorr,OSR1

9 : OSR2,OUpdate)

10 : (m→
,ω

→) ↑ AOAll(pk, {pki}i↓[n])

11 : return (m→
/↔ Q) ↗ Verify(pk,m→

,ω
→)

12 : ↗ ctr < d+ 1

OSR1(S,m, i)

1 : if i /↔ (S ↘HS) ≃ S ⇐⇒ [n] :

2 : return ⇑
3 : pm1,i ↑ SR1(ski, pki, pk, S, i,m)

4 : Q ↑ Q ⇔ {m}
5 : ctr ↑ ctr + 1

6 : return pm1,i

OSR2(S,m, i, {pm1,j}j↓S)

1 : if i /↔ (S ↘HS) ≃ S ⇐⇒ [n] :

2 : return ⇑
3 : si ↑ SR2(ski, pki, pk, S, i, {pm1,j}j↓S ,m)

4 : return si

OCorr(i)

1 : if |CS| ⇓ t ≃ i /↔ [n]

2 : ≃ i ↔ CS : return ⇑
3 : CS ↑ CS ⇔ {i}
4 : HS ↑ HS \ {i}
5 : return sk

i

Verify(pk,m,ω)

1 : pk ↑ pk

2 : (R, s) ↑ ω

3 : c ↑ HSig(pk, R,m)

4 : return (gs = Rpkc)

OUpdate()

1 : // All honest signers run Updatesk

2 : for i ↔ HS :

3 : (sk
i
, ↼i) ↑ Updatesk(ski)

4 : // Get malicious update tokens

5 : // A sends a set of tokens to each signer

6 : for i ↔ HS :

7 : {↼j}j↓CS ↑ A({↼j}j↓HS)

8 : // Check update tokens from other users

9 : for j ↔ [n] :

10 : pkArr
i
[j] ↑ Updatepk(pkArri[j], ↼j)

11 : // If Updatepk returns ≃, we abort

12 : // We skip the formal description

13 : // for the sake of readability

14 : ctr ↑ 0

Fig. 7. The adaptive unforgeability security game with updates. The di&erences w.r.t. Figure 2 are highlighted in
cyan.

Proof (Proof of Theorem 3). We start with a sequence of indistinguishable games akin to those provided in
the beginning of the proof of Theorem 2.

35



Game0. This is once again the original security game for our 2RTSch scheme, where the challenger answers
all update and signing queries by following the protocol specification honestly. By definition

Advtsauf-upA,2RTSch,ϑ,t(φ) = Pr
[
1 ↑ Game0

]
= ↽TSAUF-UP.

Game1. We again abort if there is a collision for Hf , or for either of H0 and H1, as detailed in Game1. The
gap between this game and its predecessor is identical to that between Game1 and Game0, i.e.

∣∣Pr
[
1 ↑ Game0

]
↓ Pr

[
1 ↑ Game1

]∣∣ ≃ q
2
f + q

2
0 + q

2
1

p
.

Game2. As previously done, we replace the NIZK proofs generated by honest signers in the first round
with simulated ones, by properly interacting with !.S1 and !.S2 when generating proofs for each i → HS.
Furthermore, we change how the NIZK proofs of honest users are generated at update time, by replacing
them with simulated ones too.

The gap between Game2 and Game1 is bounded above by the zero-knowledge of Π. More precisely, we
can again construct an adversary Bsfzkp that distinguishes simulated !-proofs from real ones by running A
internally. The details are identical to those provided in Game2.

∣∣Pr
[
1 ↑ Game1

]
↓ Pr

[
1 ↑ Game2

]∣∣ ≃ Advsfzkp!,Bsfzkp
(φ).

Game3. Game3 is identical to Game2 except that the secret nonce ri from honest signer i, which is computed
by evaluating fi(Hf(d)) in Game3, is drawn uniformly at random in Zp and stored in a table Tr(i, ·, ·). Unlike
the previous reduction, this time Tr(i,d, e) returns the ri value that was used in epoch e → [E] with session
id d (this way, the same integer ri is used if signing on d = (m,S) is called again to signer i in epoch e).
We still leverage lagrangian interpolation to manage adaptive corruptions: upon corruption of signer i in
epoch e we inspect the content of Tr(i, ·, e) and run lagrangian interpolation over it to reconstruct the fi
polynomial of the corresponding epoch. If not enough input-output tuples are provided we append random
ones until we match the desired degree of fi. Once again, assuming every fi polynomial is evaluated less
than deg(fi)+1 times per epoch, and each epoch has a distinct fi, lagrangian interpolation is always feasible,
and yields a consistent polynomial with probability 1. Furthermore, we also modify the key generation as
done in the previous proof, to endow the challenger with the trapdoor td and enable opening the polynomial
commitments of honest signers to arbitrary values (including, the interpolated polynomial). We also generate
Cfi of every honest user by committing to 0, in both KeyGen and Update. As argued before for Game3 and
Game2

Pr
[
1 ↑ Game2

]
= Pr

[
1 ↑ Game3

]
.

Game4. As done in Game4, we design this game to compute on our own all the nonce values R
→
i
’s that we

expect to receive from the adversary. For the first epoch, this can be done as outlined in Game4. To deal with
multiple epochs, we leverage the simulation extractability of the NIZK that we used to generate updates. In
particular, the proof of knowledge ϱ

→
i
(see Updatesk in Figure 3) is generated from an extractable NIZK, and

we leverage the corresponding extractor to obtain the committed polynomial fi. If the extraction fails, we
abort. As we did before, we check that the maliciously generated Rj terms in round two correspond to the
ones we pre-computed. We note that since A sends the update tokens to honest users independently (line 7
of Figure 7), it could in principle send distinct and inconsistent commitments to all of them. Because this
would lead to di"erent partial public keys, and the latter are incorporated in the d identifier, we keep a table
Text indexed by d, such that

Text[d] = {fi}i↔CS

contains all the extracted polynomials fi corresponding to d. Then, whenever A triggers the first round of a
signing session identified by d, we use the content of Text[d] to compute all the {Ri}i↔S↘CS nonces, and in
turn the aggregate R corresponding to that identifier.
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To bound the gap between the two games, we analyze the probability of abortion. At first, consider the
probability of aborting due to an extraction failure. In a single epoch e → [E], assuming tc(e) < n corrupted
users, we extract at most tc(e) times for each honest signer, for a total of tc(e)(n ↓ tc(e)) times per epoch.
The latter is upper bounded by n

2
/47, and we have at most E epochs, leading to a probability of at most

n
2
E/4 ·Advsfext!,Bsfext

(φ). Crucially, notice that our definition of Ropn in Section 4 incorporates d and the signer
index i into the public statement . This is meant to bind a proof to an epoch (through d, which carries
epoch-specific information through the partial public keys), and signer within that epoch (through i). In
particular, this prevents A from recycling proofs issued by other signers in previous epochs, as they pertain
to a di"erent statement. Because of this countermeasure, we can safely reduce to simulation extractability
here. As argued for Game4, this happens with probability no more than qSig ·Advss!,Bss

(φ). By a union bound

∣∣Pr
[
1 ↑ Game3

]
↓ Pr

[
1 ↑ Game4

]∣∣ ≃ qSig · Advss!,Bss
(φ) +

n
2
E

4
· Advsfext!,Bsfext

(φ).

Game5. At this stage, one is tempted to faithfully reproduce Game5. Unfortunately, this is unfeasible due to
a core gap between the refreshable and update-free constructions. In the latter, the fi factors are fixed at the
beginning, and never updated. It follows that given an identifier d, there is at most one corresponding valid
nonce R. In the refreshable case, things are not as straightforward. In principle, the updates could generate
a session identifier d→ that equals a previously used d, but corresponds to distinct polynomials fi. This is due
to the perfectly hiding Pedersen polynomial commitment that honest signers employ to generate Cfi . If such
an event occurs, blindly adopting the programming strategy of Game5 would yield inconsistent behavior.
This is true because if the fi polynomials change, then with overwhelming probability the aggregate nonce
R

→ di"ers from R too, and in turn HSig(pk, R→
,m) should not equal ▷[d].

Therefore, we rule out this possibility by introducing ad-hoc changes in Game5. We start from the following
observations:

– because of the calls CheckConsistd in the first round, each honest signer generates the Ri term corre-
sponding to identifier d i" the latter is consistent with its array pkArr

i
[·] at that point in time.

– the programming HSig(pk, R→
,m) ↑ ▷[d] only occurs if all the honest signers terminate the first round

of session identified by d.
– suppose that the following condition is guaranteed: as long as a signer i is honest, its commitments fi

are all distinct.
– because the partial public keys incorporate the Cfi commitments, this would imply distinct partial public

keys (across di"erent epochs) for each honest signer.
– then, because d incorporates partial public keys, there would be no later attempt to program HSig(pk, R→

,m) ↑
▷[d].

Therefore, in this game we enforce exactly the aforementioned condition, i.e., the absence of collisions in
Pedersen commitments. Notice that each Pedersen commitment yields a uniformly random element of G.
The collision probability for a single user is at most E

2
/p, and by union bound over the n users

∣∣Pr
[
1 ↑ Game4

]
↓ Pr

[
1 ↑ Game5

]∣∣ ≃ nE
2

p

Game6 to Game11. These games introduce changes that are identical to those introduced by their update-
free counterparts (i.e., games Game5 to Game10). The indistinguishability bounds and the corresponding
arguments are essentially the same, and we omit them for the sake of brevity.

By triangular inequality, we get the final bound
∣∣Pr

[
1 ↑ Game10

]
↓ Pr

[
1 ↑ Game0

]∣∣ ≃ 2,

with 2 defined exactly as in the main body of Theorem 3.
7 That is a consequence of the GM-AM inequality.
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Wrapper B. We can again construct a wrapper B that runs A internally, and simulates its interaction with
the challenger in Game10.

Once again, B takes as input the public group generators (g, h, v), the three polynomials x(X), w(X), u(X),
and a stream of uniformly random hashes (h1, . . . , hq) → Zq

p
to program HSig. Akin to the previous proof, B

runs A until the latter outputs a forgery (m↑
,ω

↑), with ω
↑ = (R↑

, s
↑). Then, it identifies the element hi of

the hash stream such that hi was used to answer the query HSig(R↑
, pk,m↑). It finally returns (i, s↑) if such

an index i exists, or (0,⇑) if no i was found or if the forgery is not valid.

Forking. Finally, we apply Lemma 5 to B, and construct a DLog adversary CDL akin to the previous one.
CDL collects the output of the forking construction, and postprocess it to solve the DLog challenge. The
specification is identical to the previous one, and can be found in Figure 6. The forking lemma relates
↽10 = Pr

[
1 ↑ Game10

]
to the probability of successful forking. It once again holds

AdvdlCDL
(φ) ↔ ↽10


↽10

qSig
↓ 1

p


.

Reversing the inequality, and combining it with
∣∣Pr

[
1 ↑ Game10

]
↓ Pr

[
1 ↑ Game0

]∣∣ ≃ 2 yields the claimed
bound.

While deriving CDL’s success probability does not seem conceptually harder than in the update-free
case, the combination of forking and rewinding-based extraction could introduce non-trivial problems which
call for an extended discussion. Before diving into their description and mitigation, we point out that said
problems can be avoided entirely by making the NIZK straightline extractable, e.g. by leveraging Fischlin’s
transform [Fis05].

The main concern is due to B using a rewinding witness extractor to extract the adversarially generated
fi polynomials at update time. To extract a polynomial of degree d, we must rewind d+1 times in total, each
time supplying a fresh random challenge. Conceptually, we can visualize this as splitting the execution flow
of A (inside B) into d+1 parallel branches, each corresponding to a random challenge. After collecting all of
A’s responses, the extractor can do its magic and recover fi. Noticeably, most of the d+ 1 branches become
superfluous at this point. In truth, all but one of them can be safely pruned, and we just keep one (say, the
first) as the main execution of A within B. This spares us the load of performing nested branching, which
could otherwise lead to an exponentially large number of branched executions. Furthermore, when used in
combination with forking, there are some pathological cases that should be addressed. Our application of
Lemma 5 forks the execution of B exactly at the point in time where A makes the query HSig(pk, R↑

,m
↑)

that it uses to generate the forgery. It could happen that said query occurs exactly when we need to rewind,
i.e., during the call A({⇁j}j↔HS) in line 7 of Figure 7. To ensure that the forking lemma applies, we combine
it with the rewinding-based extractor by adopting the following strategy:

– For i → [d + 1], let X1(i), . . . , XL(i) denote the inputs that A supplies to HSig in the i-th branch after
making the query HSig(pk, R↑

,m
↑). In principle, L is also parametrized by i, but one can safely ignore it

by suitably upper bounding maxi Li, e.g. by setting L = qSig.
– More generally, if no HSig(pk, R↑

,m
↑) query took place in the sequence to be rewound, let X1(i), . . . , XL(i)

just denote all of the inputs that A supplies to HSig in the i-th branch.
– Case A: We rewind before forking, and no query HSig(pk, R↑

,m
↑) is made. Then, whenever B receives

query HSig(Xj(i)) such that TSig[Xj(i)] = ⇑, it simply moves forward in its hash stream. .
– Case B: The query HSig(pk, R↑

,m
↑) is made during a rewinding sequence. Then, sticking to the notation

of the first bulletpoint, suppose that f ↓ 1 → [qSig] is the index of the last hash stream element hf↓1 that
was used by B to answer a HSig query before HSig(pk, R↑

,m
↑). As prescribed by the forking lemma, B

answers the latter call with hf . For any call HSig(Xj(i)) received by B after that, B checks if TSig[Xj(i)] =
⇑, and if so it programs with the next element of the hash stream. That is, consider the sequence

X1(1), . . . , XL(1), X1(2), . . . , XL(2), . . . , X1(d+ 1), . . . , X1(d+ 1),

, and remove all duplicate entries from it, obtaining some sequence Y1, . . . , YL→ . Then, B uses the hash
stream element hf+i to program HSig(Yi) for all i → [L→].
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– Case C: We rewind after forking, and no query HSig(pk, R↑
,m

↑) is made. The case is managed analo-
gously to case A.

Finally, to avoid confusion, we remark that the randomness used to program the random oracle in the d+1
rewound executions is independent of the main hash stream, and is encompassed by the common randomness
⇀, if we follow the notation of Lemma 5.

C Additional Figures

1. P chooses random kr, kϖr , ku, kw, kx ↔ Zq and computes:

T1 = g
kr
g
kεr
ϖ

T2 = g
kr
h
kw
1 h

ku
2

T3 = g
kx
h
kw

v
ku

P sends to V: (T1, T2, T3)
2. V sends to P a uniform random challenge c ↔ Zp.
3. P computes:

zr = kr + c · r
zϖr = kϖr + c · rr
zu = ku + c · u
zw = kw + c · w
zx = kx + c · x

P sends to V: (zr, zϖr , zu, zw, zx)
4. V checks that:

g
zr
g
zεr
ϖ = T1 · Cc

r

g
zr
h
zw
1 h

zu
2 = T2 ·Rc

g
zx
h
zw

v
zu = T3 · Cc

If all checks pass, V accepts. Otherwise, V rejects.

Fig. 8. An instantiation of our Sigma protocol to check that the prover knows r, ϱr, u, w, x such that: R = g
r
h
w

1 h
u

2 ,
Cr = g

r
g
ϖr
ϖ and C = g

x
h
w
v
u.

D Proofs of Lemmas

Proof (Proof of Lemma 2). We borrow the original argument of [BDLR25b] and summarize it here for the
sake of self-containment. Let us introduce auxiliary distributions

C0 = (g, gω, {(gεi , g
⇀i)}i↔[q]) with


ε ↑$ Zp

(ϑi)i↔[q], (ϖi)i↔[q] ↑$ Zq

p

C1 = (g, gω, {(gεi , g
ωεi)}i↔[q]) with


ε ↑$ Zp

(ϑi)i↔[q] ↑$ Zq

p

.
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Suppose A can distinguish them with advantage ↽. Then, as shown by Naor and Reingold [NR97], one can
construct a PPT adversary A→ whose advantage in the DDH game is at least ↽↓ 1/p. Hence, under the DDH
assumption C0 and C1 are distinguishable with probability at most ↽DDH + 1/p.
Next, we show that the indistinguishability of C1 and C1 implies that of D0 and D1. Assume you receive a
sample (g, w, {(ui, vi)}i↔[q]) from either C0 or C1. Then, consider the transformation

(c1, . . . , cq) ↑$ Zp

zi ↑ (vi · u↓ωh
i

)ω
↑1
v · wci for all i → [q]

(g, w, {(ui, vi)}i↔[q]) ↘ (g,εh,εv, {(ui, z
↓1
i

), ci}i↔[q])).

You can verify that this maps a sample of Cb to one of Db for any b → {0, 1}. Hence, discriminating D0 and
D1 allows to discriminate C0 and C1 with the same advantage. △▽

Proof (Proof of Lemma 4). We leverage Lemma 3, combined with Patarin’s H-coe!cient technique [Pat09],
to prove indistinguishability. We briefly recap the latter, and then proceed to its application. Let ⇁ denote a
possible transcript of an adversary A, and let p7(⇁) and p6(⇁) denote the probabilities of obtaining transcript
⇁ when A’s corruption queries, random oracle queries, and signing queries are fixed in advance in Game7 and
Game6, respectively. Then, to prove indistinguishability of the two games it su!ces to show that p7(⇁) = p6(⇁)
for all possible values of ⇁ .

Following the syntax of Lemma 3, which we leverage to achieve the previous goal, we introduce the
random variables

X0 = (εh,εv, x, u, (x6(i), w6(i), u6(i))i↔CS , (cj ,ϑj , (Ri,j , si,j)i↔HS↘S)j↔[qs])

X1 = (εh,εv, x, u, (x7(i), w7(i), u7(i))i↔CS , (cj ,ϑj , (Ri,j , si,j)i↔HS↘S)j↔[qs]),

both denoting matching parts of A’s transcript in the two games. Y0 (respectively Y1) denotes the random
variable for:

1. the outputs of HSig on all inputs except those where the game programs HSig by extracting the combined
nonce R during any signing session;

2. all (ri,j)i,j values for i → CS ∈ Sj that the game samples for the j-th signing session (where the signer
set is Sj) before A corrupts the signer i;

3. the simulated NIZK proofs of all honest signers;
4. the secret polynomials of corrupted signers {fi}i↔CS .

It is easy to see that Y0 (respectively Y1) is independent of X0 (respectively X1). Moreover, due to the
description of games Game7 and Game6, Y0 is identically distributed as Y1. We now show that for any
fixed queries of A, given either (X0, Y0) (or (X1, Y1)), the remainder of the transcript is determined by a
deterministic function of (X0, Y0) (or (X1, Y1)). We also show that both games apply a common function
f(·, ·), which we describe below for 0 → {0, 1}:

– Define ε := εh + u · εv. The H0 outputs on the session identifier d = (m,S) of all signing sessions are a
deterministic function of (εh,εv,ε, (ϑj , cj)j↔[qs], Y⇁).

– The discrete logarithm of the public key is identical in both games, and is given by x5(0) + ε. More
precisely, pkGame6 = g

x5(0)+ω by definition. Also, since w7(0) = 1 and u7(0) = u

pkGame7 = g
x7(0)h

w7(0)v
u7(0) = g

x5(0)hv
u = g

x5(0)+ωh+ωvu = g
x5(0)+ω

.

Since |CS| = t, the threshold public keys of all signers are a deterministic function of x5(0) + ε and the
signing keys of signers in CS from X⇁.

– The combined nonces and final signatures are a deterministic function of (cj , (Ri,j , si,j)i↔Sj↘HS)j↔[qs],
the signing keys of the corrupt signers, A’s internal state, and Y⇁.
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It now remains to show that X0 and X1 are identically distributed. Let

⇁ = (ε→
h
,ε

→
v
, x

→
, u

→
, (x→

i
, w

→
i
, u

→
i
)i↔CS , (c

→
j
,ϑ

→
j
, (R→

i,j
, s

→
i,j
)i↔HS↘Sj )j↔[qs])

denote a generic value that X0 and X1 can take. Let us analyze PrXb = ⇁ for b = 0 and b = 1 independently,
starting with the first case. At first, consider the event

(εh,εv, x, u, (x6(i), w6(i), u6(i))i↔CS) = (ε→
h
,ε

→
v
, x

→
, u

→
, (x→

i
, w

→
i
, u

→
i
)i↔CS).

Taking into account the definition of polynomials given in Game6, we can rewrite this as

(εh,εv, x, u, (x5(i), w5(i), u5(i))i↔CS) = (ε→
h
,ε

→
v
, x

→ ↓ ε, u
→
, (x→

i
↓ ε, w

→
i
, u

→
i
)i↔CS).

Let us break down this tuple into independent subtuples, and estimate their distributions one by one. Because
εh, εv, and u are uniformly random and independent, each corresponding triple of possible realizations
(ε→

h
,ε

→
v
, u

→) occurs with probability p
↓1(p↓ 1)↓2.

Then, because A makes exactly t corruptions (see Game 1) and x5 has degree t, the t + 1 points (x→ ↓
ε, {x→

i
↓ε}i↔CS) uniquely determine it. More precisely, there exists a unique polynomial P (X) → Zp[X] such

that P (0) = x
→ ↓ ε and P (i) = x

→
i
↓ ε for all i → CS. Thus, x5 must equal P (X), which happens with

probability
∣∣Zp[x](t)

∣∣↓(t+1)
= p

↓(t+1). Because w5 and u5 both have null constant term and degree t, the t

values (w→
i
, u

→
i
)i↔CS su!ce to uniquely determine them. Hence, by a similar argument, the tuple (w→

i
, u

→
i
)i↔CS

occurs with probability p
↓2t.

The cj and ϑj values are also uniform and independent, thus each tuple (c→
j
,ϑ

→
j
)i↔HS↘Sj is equiprobable with

probability density p
↓2qs .

Now, consider the distribution of (Ri,j , si,j)i↔HS↘Sj ,j↔[qs] conditioned on the event that all other components
of X0 are fixed and equal to the generic values reported in ⇁ . By taking into account all the modification to
the original game, one can verify that

Ri,j = g
(ri,j↓εju·w5(i)↓ωcjw5(i)+εju5(i))ςi(Sj),

si,j = (ri,j + cj · (x5(i) + ε))ςi(Sj).

Note that in this scenario, the Ri,j and si,j terms are almost deterministic, and the only source of stochasticity
is the dependence on the random variables ri,j . Such variables are sampled by honest signers, and they are
all uniformly random over Zp and independent. Let us focus on fixed indices (i, j). With other components
fixed as assumed, not all (R→

i,j
, s

→
i,j
) pairs are admissible. Specifically, if we set R→

i,j
= g

ei,j then the following
linear system

L
i,j

0 :


(ri,j ↓ ϑju · w5(i)↓ εcjw5(i) + ϑju5(i))ςi(Sj) = ei,j

(ri,j + cj · (x5(i) + ε))ςi(Sj) = s
→
i,j

.

in the unknown ri,j must admit a solution. Thus, each (R→
i,j
, s

→
i,j
)i↔HS↘Sj ,j↔[qs] for which L

i,j

0 holds for all
i → HS ∈ Sj , j → [qs] occurs with the same probability

∏

j↔[qs]

p
↓|Sj | = p

↓k
,

where k =
∑

j↔[qs]
|Sj |. Combining everything, each generic ⇁ has probability (p ↓ 1)↓2 · p↓(2+3t+2qs+k) of

being generated.
Now, let us focus on X1. As before, the values (ε→

h
,ε

→
v
, u

→) occur with probability p
↓1(p↓1)↓2. Furthermore,

by recycling the previous arguments on polynomials x7, w7, u7 and samples (c→
j
,ϑ

→
j
)i↔HS↘Sj , and combining

it with the aforementioned density, we get that each tuple (ε→
h
,ε

→
v
, x

→
, u

→
, (x→

i
, w

→
i
, u

→
i
)i↔CS , (c→j ,ϑ

→
j
)j↔[qs]) occurs

with probability p
↓(2+3t+2qs). Next, we again evaluate the distribution of (Ri,j , si,j)i↔HS↘Sj ,j↔[qs] conditioned

on the event that all other components of X1 are fixed. This time the coe!cients equal

Ri,j = g
(ri,j+εju(w5(i)+1)↓ωcj(w5(i)+1)+εj(u5(i)+u))ςi(Sj),

si,j = (ri,j + cj · x5(i))ςi(Sj).
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We see that, once again, the only source of randomness is the set of coe!cients ri,j . By recycling the previous
argument we derive an analogous admissibility condition

L
i,j

1 :


(ri,j + ϑju(w5(i) + 1)↓ εcj(w5(i) + 1) + ϑj(u5(i) + u))ςi(Sj) = ei,j

(ri,j + cj · x5(i))ςi(Sj) = s
→
i,j

.

Since the latter are uniformly random, each admissible tuple (R→
i,j
, s

→
i,j
)i↔HS↘Sj ,j↔[qs] still occurs with prob-

ability p
↓k, with k defined as in the previous case. Finally, we claim that conditions L

(i,j)
0 and L

(i,j)
1

are equivalent for all i, j. Indeed, one can verify that the latter is obtained from the first by subtracting
term εcj to both equations. Thus, by combining everything we conclude that any admissible ⇁ has density
(p↓ 1)↓2 · p↓(2+3t+2qs+k), and that the sets of admissible ⇁ values under X0 and X1 coincide. △▽

D.1 Correctness of our Scheme

Fix a signing set S ↙ [n] with |S| ↔ t and let ςi denote the Lagrange coe!cient at 0 for index i → S. Each
signer i publishes

Ri =

g
ri H0(d)

wi H1(d)
ui
ςi

, si = (ri + c xi)ςi,

where ri = fi(Hf(d)) and c = HSig(pk, R,m) with R =


j↔S
Rj .

First, aggregate the nonces:

R =
∏

i↔S

Ri =
∏

i↔S


g
ri H0(d)

wi H1(d)
ui
ςi = g

∑
i ςi ri H0(d)

∑
i ςi wi H1(d)

∑
i ςi ui .

Because w and u are degree-t polynomials with zero constant term, Lagrange interpolation at 0 over any set
of size at least t gives

∑

i↔S

ςi wi = w(0) = 0 and
∑

i↔S

ςi ui = u(0) = 0.

Hence the H0- and H1-factors vanish, and we obtain

R = g
r with r ↑

∑

i↔S

ςi fi(d).

Next, aggregate the partial responses:

s =
∑

i↔S

si =
∑

i↔S

ςi (ri + c xi) =
∑

i

ςi ri

  ︸
= r

+ c

∑

i

ςi xi

  ︸
= x(0)

= r + c x(0),

where we used that x is a degree-t polynomial, so
∑

i
ςixi = x(0).

Finally, recall that the global public key is

pk = g
x(0)

h
w(0)

v
u(0) = g

x(0)

since w(0) = u(0) = 0. Verification computes c = HSig(m,R, pk) and checks

pk c ·R =

g
x(0)

c · gr = g
r+c x(0) = g

s
,

which holds by the equality derived above. Therefore every honestly produced signature ω = (R, s) verifies.
We want to emphasize, that the NIZK proofs {ϱi} ensure that each Ri is well-formed with respect to
(pk

i
,d,ςi), preventing malformed nonce injections; they are not needed for algebraic correctness but for

soundness.
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