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Abstract. Passwords remain the dominant form of authentication on the Internet. The rise of single
sign-on (SSO) services has centralized password storage, increasing the devastating impact of potential
attacks and underscoring the need for secure storage mechanisms. A decade ago, Facebook introduced
a novel approach to password security, later formalized in Pythia by Everspaugh et al. (USENIX’15),
which proposed the concept of password hardening. The primary motivation behind these advances is to
achieve provable security against offline brute-force attacks. This work initiated significant follow-on re-
search (CCS’16, USENIX’17), including Password-Hardened Encryption (PHE) (USENIX’18, CCS’20),
which was introduced shortly thereafter. Virgil Security commercializes PHE as a software-as-a-service
solution and integrates it into its messenger platform to enhance security.
In this paper, we revisit PHE and provide both negative and positive contributions. First, we identify a
critical weakness in the original design (USENIX’18) and present a practical cryptographic attack that
enables offline brute-force attacks – the very threat PHE was designed to mitigate. This weakness stems
from a flawed security model that fails to account for real-world attack scenarios and the interaction
of security properties with key rotation, a mechanism designed to enhance security by periodically
updating keys. Our analysis shows how the independent treatment of security properties in the original
model leaves PHE vulnerable. We demonstrate the feasibility of the attack by extracting passwords in
seconds that were secured by the commercialized but open-source PHE provided by Virgil Security.
On the positive side, we propose a novel, highly efficient construction that addresses these shortcomings,
resulting in the first practical PHE scheme that achieves security in a realistic setting. We introduce
a refined security model that accurately captures the challenges of practical deployments, and prove
that our construction meets these requirements. Finally, we provide a comprehensive evaluation of the
proposed scheme, demonstrating its robustness and performance.

1 Introduction

Passwords remain popular because they are easy to use, require no additional hardware, and ensure backward
compatibility with existing systems. However, the growing number of cyberattacks and data breaches has
led to the introduction of single sign-on (SSO) services, which simplify user management and offload the
responsibility of password management from individual servers. While SSO reduces the burden on individual
systems, it centralizes password storage, increasing the risk as attackers can now focus on compromising a
few critical servers. For instance, in 2023, there were a record-breaking 3,205 data compromises, representing
a 72% increase over the previous high recorded in 2021. These breaches exposed approximately 353 million
individual records, underscoring the escalating threat of cyberattacks targeting user databases [14].

To address this growing issue, Facebook proposed a system involving a ratelimiter – a cryptographic
service that remains oblivious to the password and assists only in its verification. This idea was initially
formalized in Pythia [11] and later further developed into Password-Hardening (PH) [20] and Password-
Hardened Encryption (PHE) [19]. The key innovation extends beyond simply protecting passwords, intro-
ducing a password-based key derivation mechanism. This proposal was quickly commercialized by Virgil
Security as part of its software-as-a-service solution, demonstrating its immediate practical relevance and
applicability.

Additionally, PH and PHE incorporate the capability for performing key updates without user involve-
ment, a feature not only required by the PCI-DSS standard [26] but also widely recommended as a best
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practice by major providers. For example, Google advises regular key rotation to mitigate security risks
associated with long-term key usage [13]. Similarly, industry standards such as those from the National In-
stitute of Standards and Technology (NIST) emphasize the importance of key rotation in maintaining robust
security practices [4]. Regular key updates enhance security by cryptographically erasing leaked keys and
introducing fresh, independent keys.

The rapid adoption of PHE by Virgil Security underscores the urgent need in the industry for solutions
that secure password storage while complying with industry standards. However, adapting novel crypto-
graphic primitives to practice always carries the same high risk: novel cryptography is often not well un-
derstood, both in terms of the security model and the resulting security of the schemes. In most cases,
cryptography only provides security within the model in which it has been proven. If the model deviates
significantly from real-world scenarios, the scheme may be insecure against practical attacks. In this work,
we show that this is the case for PHE. The original security model evaluates several properties independently
and does not consider key rotation as part of all security definitions. We show that this omission leads to
a practical cryptographic attack that allows offline brute-force attacks on passwords, the very problem that
PHE was designed to prevent. To illustrate the practical implications, we implement the attack using a fork
of the PHE implementation by Virgil Security [25]. This attack pushes the state of password hardening back
to before the invention of PHE, leaving an important question unanswered:

Are there efficient Password-based Key Derivation schemes that support rate-limiting and are secure
in practice?

1.1 Our Contribution

In this work, we make both negative and positive contributions to the study of password-hardened encryption
(PHE):

Negative Contributions: We identify a critical security flaw in the formal model of PHE that enables a
concrete cryptographic attack on the scheme commercialized by Virgil Security. Our analysis shows that the
root cause of this vulnerability lies in a definitional gap: the absence of key rotation as part of some security
definitions. To demonstrate the practicality of this attack, we forked the PHE framework of Virgil Security
[25] and show how an adversary can (offline) brute-force passwords. We give a comprehensive discussion of
the underlying definitional issues and their impact on the concrete attack against Simple PHE [19] and thus
on the real-world implementation of Virgil Security in Section 2.

Positive Contributions: We address the identified gap by introducing a novel and more realistic security
model for PHE, explicitly modeling key rotations as part of the life cycle of a PHE scheme. Building upon
this enhanced model, we propose a new PHE design called HildeGUARD that maintains security even with
alternating corruptions of the login-server and the ratelimiter. Furthermore, we provide a comprehensive
evaluation that underscores both the practicality of the identified attack and the efficiency and robustness
of our proposed solution.

This dual approach of identifying flaws and presenting solutions highlights the challenges and opportu-
nities of adapting cryptographic primitives to real-world scenarios.

Real World Considerations: Beyond theoretical implications, our work directly impacts PHE deployment. We
provide concrete benchmarks and two migration strategies to enable a seamless adoption of HildeGUARD.
We show, that the migration from hashed passwords and SimplePHE is efficient, requiring no user re-
enrollment; our simulations show the migration of one million users in under a minute. We also describe
an opt-out mechanism, ensuring service providers retain the flexibility to transition away from HildeGUARD
also without user interaction.
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1.2 Related Work

Everspaugh et al. [11] initiated the study of password hardening (PH) systems, following an initial proposal
by Facebook [22], and introduced constructions based on partially-oblivious pseudorandom functions. Since
then, the cryptographic community has proposed several more efficient PH schemes. PO-COM, introduced
by Schneider et al. [24], suffers from offline attacks in a stronger security model. Phoenix, proposed by Lai et
al. [20], achieves security under a static corruption model and does not support key derivation capabilities.

In parallel, the concept of password-hardened encryption (PHE) emerged as a natural extension of the
PH framework, allowing data to be encrypted under a user’s password while retaining resistance to server
compromise. Two PHE schemes are currently known: Simple PHE, introduced by Lai et al. [19], and its
threshold variant TPHE, proposed by Brost et al. [6]. In this paper, we demonstrate an offline brute-force
attack against Simple PHE, revealing a critical vulnerability in its design that contradicts its intended security
goals. The TPHE construction by Brost et al. [6] is not affected by our attack as their security model considers
semi-adaptive corruptions–explicitly capturing the attack scenario that we exploit.

Nonetheless, TPHE’s robustness comes at a significant cost. The protocol requires six rounds of commu-
nication and relies heavily on expensive zero-knowledge proofs, making it difficult to deploy in real-world
systems where latency, simplicity, and efficiency are paramount. Although one can theoretically instanti-
ate TPHE with a single server to yield a PHE scheme, the associated overhead–both in communication
and computation–remains prohibitive. In contrast, our construction is tailored for practical deployment. It
achieves strong post-compromise guarantees under a corruption model that reflects the real world, while
requiring only a single round of interaction and avoiding costly cryptographic tools where possible.

Other Password-based cryptographic primitives include several related terms such as Password-Protected
Secret Sharing (PPSS), Password-Authenticated Key Exchange (PAKE), and Password-Based Threshold Au-
thentication (PbTA).
PPSS [3] allows threshold sharing of a secret across servers, requiring a password for retrieval, but lacks key
rotation and requires per-user key storage [19,7,16]. In this context, per-user key storage means that each
server must store a key for each user it serves. In contrast, the ratelimiter in (T)PH(E) stores only a single
key, regardless of the number of users. Password-Authenticated Key Exchange (PAKE) and its extensions,
such as Threshold PAKE (T-PAKE) [3,15] and Two-Factor Authenticated Key Exchange (TFA-KE) [17], al-
low users to establish session keys with servers, but do not support key rotation and also require per-user key
storage. Distributed Password Verification [8], in an n-out-of-n setting, relies on offline backup tapes for key
rotation and also requires per-user keys. Password-Based Threshold Authentication (PbTA) [1,5] produces
verifiable authentication tokens, but modifies the user-server interface by replacing passwords with tokens
and requires direct user interaction with cryptographic servers. Finally, Practical Password Hardening Based
on TLS [10] is a deployable scheme that uses HMAC with a server’s TLS secret key, but lacks key rotation
and is vulnerable to offline dictionary attacks if the server is compromised. DPaSE [9] enables key-derivation
based on a password, but it does not support key rotation.

2 Technical Outline

We begin by describing the interface used for interaction within the system, as it provides a natural starting
point for deriving the intuitive security properties one would expect from such a system. Through this
exploration, we show that the Lai et al. security model is inadequate and fails to address specific threats and
scenarios that arise in practical deployment. To illustrate the real-world impact of the model’s shortcomings,
we outline a high-level attack that exploits these vulnerabilities. Finally, we present our novel scheme that
achieves security within this model.

System outline. The following description refers to the key-encapsulation variant of PHE as implemented
by Virgil Security. PHE involves three participants (cf. Figure 1): the user, who submits a username and
password to derive an encapsulated key after providing valid credentials; the login server, which stores an
enrollment representing an encryption of the user’s credentials; and the ratelimiter, which validates requests
without accessing the user’s secret credentials.
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User Login Server Ratelimiter

un, pwd

K

Fig. 1. Intuition of password-hardened encryption. The interfaces for the user remain the same, while the key can
only be retrieved if both the server and the ratelimiter interact to run the decryption process.

The functional requirements are as follows: The user must remain stateless and perform no cryptographic
operations to ensure full compatibility. This constraint also mandates a fixed interface on the login server. To
avoid offline brute-force attacks, the login server cannot independently verify the correctness of a password
and must interact with the ratelimiter for validation. Besides its own secret, the ratelimiter maintains only
a minimal state for counting recent decryption attempts and limiting them. This especially means that the
ratelimiter does not keep individual records per user. A critical feature of the system is support for key
rotation, which requires sublinear communication between the server and the ratelimiter, while ensuring the
user remains uninvolved.

Security Requirements. To formulate the desired security properties for PHE, we first consider the single-
server setting as the basic model. From there, we incrementally extend the model, ensuring that each exten-
sion introduces improved security guarantees. This step-by-step approach allows us to systematically express
the incremental improvements in security that each modification provides.

Single Server Setting. In the single-server setting, it is obvious that no security can be provided in the event
of a server compromise, as all secrets and the password database would be exposed to the attacker. While
modern cryptographic techniques such as memory-hard functions [23] can significantly increase the cost of
brute-force attacks, they do not fully address this vulnerability. As a result, any security model that aims
for the strongest guarantees must exclude server compromise scenarios, since achieving security under such
conditions is fundamentally infeasible.

Two-Server Setting. To tolerate server compromises, it is necessary to introduce a second component that
keeps its own secret. This principle of distributed trust is also applied in PHE with the introduction of a
ratelimiter. Following the principle of minimal exposure and knowledge, the ratelimiter never receives the
plaintext password or any other private information; instead, it is designed only to assist in the verification
process.

In the simplest implementation of this setup, the server computes an HMAC over the password and a
nonce, and then sends the resulting value to the ratelimiter. The ratelimiter, in turn, computes another
HMAC on this received value and returns the resulting “double HMAC” to the server, which then stores it
in the database.

Since the output of the HMAC is pseudorandom, the ratelimiter does not gain any information about
the password. At the same time, this design ensures that verification requires the active participation of the
ratelimiter, since the server alone cannot compute the double HMAC independently. Consequently, even if
the password database and the server’s private key are compromised, the stored value remains pseudorandom
under the ratelimiter’s key.

The introduction of an additional party, the ratelimiter, inherently creates a new potential attack vector,
as an adversary could target this party in addition to the server. However, unlike the single-server setting, the
model can now handle corruption of either the server or the ratelimiter independently, since the remaining
party’s secret ensures the pseudorandomness of the stored values. The security model should therefore be
designed to tolerate the compromise of either the server or the ratelimiter. However, as in the single-server
setting, it is impossible for a scheme to tolerate the compromise of both parties simultaneously, since there
would be no remaining secret to protect the records storing the password. Thus, the security of this model
depends on the assumption that at least one party remains uncompromised at all times.
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Two-Server Setting With Key Rotation. In practice, it is unrealistic to assume that one of the parties
will remain honest at all times. To overcome the impossibility result of the previous setting, we observe
that in practice, compromise is often transient: once an intrusion is detected, operators typically respond
with containment measures such as credential revocation or privilege reduction, effectively cutting off the
attacker’s access to the compromised system. A 2024 survey conducted by Fortinet [12] found that one-third
of organizations detected six or more intrusions within a year–highlighting both the frequency of compromises
and the feasibility of detecting them. If the secret of the once corrupted party remains unchanged after the
adversary loses access, nothing is won: when the adversary corrupts the other party, it has access to both
secret states, leaving the records storing the passwords unprotected. This is the case even though the parties
are never compromised simultaneously.

To address this, various standards and best practices advocate periodic rotation of cryptographic keys.
However, performing non-trivial key updates–where data is re-secured without decrypting and re-encrypting
all stored information–poses significant challenges. In our setting, this problem is further complicated by the
fact that the password must, to some extent, be part of the update process. For practical reasons, involving
the user in these updates is not feasible. In addition, to ensure efficiency, the communication between the
server and the ratelimiter during the key update process must remain independent of the number of stored
records.

In our example, the use of the double-HMAC approach clearly does not support key rotation, as the
construction lacks the necessary flexibility to update cryptographic keys without reprocessing all stored
values. It appears that achieving efficient and secure key rotation would require the use of number theoretic
properties or more advanced cryptographic primitives.

From the perspective of the security model, the goal is to capture the natural lifecycle of detection,
revocation, and restoration that characterizes modern incident response. In other words, we want to tolerate
corruption of both the server and the ratelimiter, provided that an honest key update has been performed
in the meantime. The underlying intuition is that after a key rotation, the leaked key and the other party’s
rotated key would be “out of sync”. This desynchronization ensures that even if one key is compromised,
the remaining rotated key can still protect the security of the system.

It is reasonable to assume that an adversary who compromises one party cannot automatically compro-
mise the second. This assumption is rooted in the architectural separation in PHE, where the ratelimiter
is designed in a zero-trust fashion to operate independently. It may even be managed by a different orga-
nization. As a result, the server and the ratelimiter could rely on distinct hardware, software stacks, and
operational policies. This infrastructural and administrative isolation creates a natural barrier to simultane-
ous compromise–especially considering the narrow time window that may exist between the first compromise
and the execution of containment measures, including a key rotation. Moreover, one could schedule periodic,
proactive key rotations to anticipate corruption even before it is detected. Therefore, assuming independent
corruption is not only theoretically meaningful but also aligned with realistic deployment scenarios.

To formalize this intuition, the security model must explicitly allow the attacker to corrupt one party,
trigger an honest key rotation, and then corrupt the other party. Note that the security cannot be restored
through a dishonest key rotation, since any state transition controlled or observed by the adversary preserves
full knowledge of the party’s internal secrets. De-corruption upon an honest key-rotation is the standard in
password-based cryptography [5,6,8,11]. Even in the scenario of alternating corruption, the record storing the
password must remain secure; otherwise, the concept of key rotation loses its purpose. This critical aspect is
precisely where the Simple PHE model falls short, leading to the break of their scheme. Although this attack
is formally outside of their defined model, it highlights the essential need to design security models that are
as close to practical considerations as possible. Filling this gap is crucial to ensuring robust security against
realistic attack scenarios.

Breaking Simple PHE. To describe our offline brute-force attack against Simple PHE [19], we first recall the
structure of the enrollment record and then give a detailed step-by-step explanation of the attack. Let skS

and skR represent the private keys of the server and the ratelimiter, respectively. The enrollment record,
which encodes the password pwd and hides the encapsulated key K, is structured as T = (t0, t1, nS , nR),
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where nS and nR are nonces, and the values t0 and t1 are computed as

t0 = HS,0(pwd , nS)
skS ·HR,0(nR)

skR

and
t1 = HS,1(pwd , nS)

skS ·HR,1(nR)
skR ·KskS .

We assume that the target user is already enrolled with the secure password secPW, and we denote their
enrolment record as T hon = (thon0 , thon1 , nhon

S , nhon
R ) with

thon0 = HS,0(secPW, nhon
S )skS ·HR,0(n

hon
R )skR

and
thon1 = HS,1(secPW, nhon

S )skS ·HR,1(n
hon
R )skR ·KskS .

Step 1 – Enrolling a Malicious User: In the first step, the adversary corrupts the ratelimiter and registers
a malicious user using a password malPW. During the execution of this protocol, it reuses the nonce nhon

R

used during the enrollment of the target user. The resulting enrollment record Tmal = (tmal
0 , tmal

1 , nmal
S , nhon

R )
is stored at the honest server. The values tmal

0 and tmal
1 are computed as

tmal
0 = HS,0(malPW, nmal

S )skS · HR,0(n
hon
R )skR

and
tmal
1 = HS,1(malPW, nmal

S )skS · HR,1(n
hon
R )skR · K̂skS .

The adversary now releases the ratelimiter3, and the system performs an honest key-rotation, turning the
malicious ratelimiter into an honest party.

Step 2 – Corrupting the Server: The next step is for the adversary to corrupt the server. Note that as a
result of the key rotation, the keys of both the server and the ratelimiter have been updated. We refer to the
updated keys as sk ′

S and sk ′
R respectively. Since the attacker corrupts the server, it knows sk ′

S and it also
knows the password malPW, and can extract the ratelimiter part of tmal

0 as follows

HR,0(n
hon
R )sk

′
R = tmal

0 /HS,0(n
mal
S ,malPW)sk

′
S .

Given that this value is the same in thon0 , the malicious server can extract the hash of the honest user’s
password from thon0 :

HS,0(n
hon
S , secPW) =

(
thon0 /HR,0(nR)

sk ′
R

)1/sk ′
S

.

Given the hash, it is easy to see that the adversary can simply perform an offline brute-force attack. To val-

idate the practical impact of this vulnerability, we implemented the attack using the open-source framework
maintained by Virgil Security. Full implementation details and attack traces are provided in Section 5.1.

A Novel Protocol. Our protocol shares the idea, similar to the Simple PHE protocol, that the enrolment record
consists of two components–an authentication token and the encryption of the encapsulated key. Otherwise,
the two protocols are fundamentally different. Below we provide an intuition of the main components, with
a full description available in Section 4.

Protection against malformed ciphertexts: A critical vulnerability in the original protocol arises from
the attacker’s ability to reuse his own nonce to “unblind” a target user’s enrollment record. To counter
this, we introduce a shared nonce, derived jointly by the server and the ratelimiter as n ← H(nS , nR).
This joint nonce ensures that both parties contribute to the randomness, reducing the risk of malicious
reuse or manipulation.

3 As described above, this is not part of a deliberate tactic of the adversary but rather the consequence of effective
incident response.
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Protection against database leakage: To prevent information leakage from a compromised database,
the server encrypts all elements of the enrolment record using a CCA-secure encryption scheme with a
symmetric private key, skS . This encryption ensures that even if the database is leaked to a malicious
ratelimiter, no information about the cryptographic key or salted password hash is exposed. In addition,
the protocol supports key rotation: when the server updates its private key, it locally decrypts and re-
encrypts all records. This guarantees that even if the ratelimiter was malicious during the attack, the
records remain secure as long as the server’s private key is uncompromised.

Secure Decryption Protocol: The decryption process has been fundamentally redesigned to ensure that
components of the enrollment record and exchanged messages cannot be reused across multiple instances.
This is achieved by incorporating ephemeral keys into the decryption protocol. The ephemeral key intro-
duces session-specific randomness, effectively defeating replay attacks and ensuring that all cryptographic
operations remain unique and secure in each instance.

3 Password-Hardened Encryption

This section defines the interfaces, explains the security model intuitively, and formally describes the security
games.

3.1 Interfaces

We largely follow the work of [19], but change the encryption protocol slightly. From the user’s point of view,
the encryption protocol as defined in [19] takes a password and a message as input and stores a ciphertext on
the server. In practice, this message is most likely a key for a private key encryption scheme used to encrypt
the actual payload. This is how Virgil Security uses PHE [25]. As was done for Password-Protected Secret
Sharing [15], we change the interface to reflect this practical use in the theoretical definitions. Instead of
taking a message as input to be encrypted, the encryption functionality takes only the user’s password and
returns a fresh key and a ciphertext in which the key is stored. We define a password-hardened encryption
scheme as follows:

Definition 1 (Password-Hardened Encryption). A password-hardened encryption (PHE) scheme, con-
sists of four efficient algorithms (Setup,SKeyGen,RKeyGen,Update) and three efficient protocols (⟨S,R⟩enc,
⟨S,R⟩dec, ⟨S,R⟩rot), that we define as follows:
pp ←$ Setup(1λ): The setup algorithm takes the security parameter 1λ as input and returns public parameters
pp.
(pkS, skS)←$ SKeyGen(pp): The server key generation algorithm takes the public parameter pp as input and
returns a server key pair (pkS, skS).
(pkR, skR)←$ RKeyGen(pp): The ratelimiter key generation algorithm takes the public parameter pp as input
and returns a ratelimiter key pair (pkR, skR). For brevity, we assume that all algorithms and in protocols all
parties take pp, pkS, and pkR as inputs.
((C ,K ), ϵ)←$ ⟨S(skS, pwd),R(skR)⟩enc: The encryption protocol is run between the server and the ratelimiter.
The server takes its secret key skS and the password pwd as inputs. The ratelimiter takes its secret key skR

as input. The server returns a ciphertext C and a key K , while the ratelimiter returns the empty string ϵ.
(K , ϵ)← ⟨S(skS, pwd ,C ),R(skR)⟩dec: The decryption protocol is run between the server and the ratelimiter.
The server takes its secret key skS, a password pwd, and the ciphertext C as inputs. The ratelimiter takes
its secret key skR as input. The server returns a key K and the ratelimiter returns the empty string ϵ.
((skS

′, pkR
′, τ), (skR

′, pkS
′))←$ ⟨S(skS),R(skR)⟩rot: The key rotation protocol is run between the server and

the ratelimiter. The server and the ratelimiter take their respective secret key skS or skR as input. The
server returns its new secret key skS

′, the ratelimiter’s updated public key pkR
′, and an update token τ . The

ratelimiter returns its new secret key skR
′ and the server’s updated public key pkS

′.
C ′ ← Update(skS, τ,C ): The update algorithm takes the server’s secret key skS, the update token τ , and the

ciphertext C as inputs. It returns an updated ciphertext C ′.
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3.2 Security Model

In this section, we close the gap in the existing security definition by Lai et al. [19] by proposing enhanced
security definitions for PHE. We follow the approach by Brost et al. [6] by using the two security definitions,
where each definition fully covers one of the security dimensions. Our hiding definition extends the domain
of password-hardened encryption to a semi-adaptive corruption model.

Hiding. The main limitation of recent security definitions for PHE (cf. [19]) is that they handle different
attack vectors in separate games. Partial obliviousness only considers the corruption of the ratelimiter while
ignoring the possibility of a corrupt server. Hiding only covers security against a corrupt server while ignoring
corrupt ratelimiters. Formally speaking, Lai et al. restrict their definition to a static corruption model which
implies that an adversary can only ever corrupt a single party but never both, one after the other.

In conclusion, Lai et al. assume that all adversaries restrict themselves to exploiting only one attack vector
even if a combination of attack vectors would lead to a successful attack. This assumption is unrealistic, as
real-world adversaries will exploit all available attack vectors concurrently to accomplish their objectives. As
shown in Section 2, this theoretical gap can lead to real-world attacks, like the one we have found against
SimplePHE [19]. To close this gap, we follow the approach by Brost et al. [6] and merge the security notions
of partial obliviousness, hiding, and forward security into a single, comprehensive definition called hiding,
which allows semi-adaptive corruptions of the server and the ratelimiter. In addition, our definition of hiding
offers an important improvement by enforcing rate-limiting, a feature not present in the definition proposed
by Brost et al.

It is worth noting that we cannot simply remove the threshold-related parts of the TPHE definitions
of [6] to obtain definitions for PHE as we have modified the encryption protocol to fit the encapsulation
setting. Consequently, we no longer have a distinguishing game where the adversary has to decide which of
two messages is encrypted in a ciphertext, but rather a search game where the adversary has to find the
uniformly random key encrypted in a ciphertext. This change in comparison to [6] allows for more efficient
instantiations while still providing meaningful guarantees for real-world deployments, as in practice, the
encrypted message is a uniformly random key anyway.

Corruption Model. We require that an honestly executed key rotation must reset the corruption. Therefore,
we split the execution of a PH scheme into epochs separated by honest key rotations. During an honest key
rotation, all parties are honest. The update token is used only within this honest time frame and safely deleted
before any party is corrupted. If the adversary were able to obtain the update token, it could recompute the
private state transition of the honest key-rotation, making it a dishonest key rotation that does not reset
corruption.

In every epoch, either the server or the ratelimiter can be corrupted. It is important to note that achieving
security against a simultaneous corruption of the ratelimiter and the server is generally impossible. Follow-
ing [6], we focus on semi-adaptive corruption, where the desired corruption has to be announced before the
next key-rotation, instead of fully adaptive corruption, where corruption can happen at any time. In our
security proof, we inject different challenges according to the upcoming corruption during the key rotation.
To achieve security under fully adaptive corruption, we would have to guess the corruption beforehand to
inject the correct challenge. This reduces the tightness of the proof by a factor of (1/2)Qrot , where Qrot is the
number of key rotations.

A Corrupted Server. When the server is corrupted, it trivially learns all passwords and keys for newly gen-
erated ciphertexts from the encryption request. Similarly, it learns all passwords used to decrypt ciphertexts
and the key if the decryption is successful. However, all remaining passwords should not be brute-forceable
by a corrupted server and the keys should remain hidden from it.

A Corrupted Ratelimiter. When the ratelimiter is corrupted, it can refuse to answer requests, thus preventing
the scheme from working. Nevertheless, it should not learn any password or key used during encryption or
decryption and should not be able to brute-force passwords without the server, even if the records are leaked.
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Furthermore, a corrupt ratelimiter should not be able to make a decryption attempt successful if an incorrect
password is used.

Enforced Rate-limiting. Existing security definitions for PHE (and PH) impose an upper limit on the number
of decryption attempts for the challenge ciphertext (resp. the challenge enrollment record), even if the
ratelimiter (or server) would continue to respond to these requests. This scenario creates a situation where
PHE/PH schemes can be proven secure even without any rate-limiting measures implemented within the
scheme, because the security game already handles the rate-limiting. In addition, all existing PHE and PH
schemes rely solely on the ratelimiter to limit decryption attempts. As a result, a malicious ratelimiter can
use unrestricted server interactions to brute-force a password while disregarding its own quota bounds. To
address this limitation in current definitions, we allow the adversary to query the decryption oracle arbitrarily
often, forcing the scheme to implement rate-limiting measures on both the server and the ratelimiter side.

The Hiding Game. We address the above issues in the security game of hiding (Figure 2). The security
game samples keys for the server and ratelimiter and draws a random challenge password pwd∗ from a fixed
password space PW. The challenge password pwd∗ is used in an encryption protocol to generate a ciphertext
C ∗ and a key K ∗. The adversary wins the security game if it correctly guesses which key is encrypted in
the challenge ciphertext C ∗. Furthermore, the adversary can interact with honest parties through multiple
oracles which we intuitively describe in the following. We formalize the oracles in Figure 3.
Encryption & Decryption Oracle: The oracle runs the corresponding protocol with the adversary, simulating
the non-corrupted party. It returns the ciphertext and key or the decrypted key, respectively.
Challenge Oracles: If the server is not corrupted during the current epoch, the challenge encryption/decryption
oracle calls the corresponding “standard” encryption/decryption oracle on the challenge password. The chal-
lenge encryption oracle can only be called once and does not return the challenge key.
Rotation Oracles: The honest rotation oracle performs an honest key rotation and resets the corruption state.
It returns a secret key according to the adversary’s corruption choice Corr′ for the next epoch. The dishonest
rotation oracle performs a key rotation with the adversary, simulating the non-corrupted party.
Update Oracle: The update oracle uses the current update token τ to update a ciphertext C into an updated
ciphertext C ′ and returns it.

Definition 2 (Hiding). A password-hardened encryption scheme PHE is semi-adaptively hiding if, for any
PPT adversary A, Qval ≥ 0, and any password space PW4, there exists a negligible function negl, such that
for all λ ∈ N

Pr[HidPHE,A,Qdec,PW(λ) = 1] ≤ Qdec

|PW|
+ negl(λ),

where Qdec is the rate-limiting threshold of the PHE scheme. The randomness is taken over the random coins
of all randomized algorithms. The game
HidPHE,A,Qdec,PW(λ) is defined in Figure 2.

Binding. Intuitively, binding ensures that a corrupt ratelimiter cannot influence en-/decryption in a way
that an incorrect key is obtained. In other words, if decryption returns a key, it is always the same one as
returned during encryption, even if the ratelimiter is corrupt. Because the derived key is then used outside of
PHE to en-/decrypt data, the importance of always correct keys becomes clearer when looking at the impact
there. Assume, for example, that the ratelimiter is temporarily corrupt and deviates from the protocol such
that an incorrect key is returned to the user. The user then uses this incorrect key to encrypt data. Now, even
if the ratelimiter is honest again, the user cannot obtain the same key to decrypt the data. Consequently,
this data is lost forever.

4 For simplicity, we assume a uniform password distribution. Extending the definition to arbitrary password distri-
butions is straightforward and only requires replacing Qdec

|PW| in the upper bound to a min-entropy term.
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HidPHE,A,Qdec,PW(λ)

1 : pp ←$ Setup(1λ)

2 : (pkS, skS)←$ SKeyGen(pp), (pkR, skR)←$ RKeyGen(pp)

3 : Corr := ⊥, τ := ϵ,K ∗ := ϵ, pwd∗ ←$ PW
4 : O := {Oenc,Odec,OencCh,OdecCh,

5 : OHonRot,ODishonRot,OUpdate}

6 : K ′ ← AO(1λ, pkS, pkR)

7 : return K ′ = K ∗

Fig. 2. The security game of hiding for PHE.

Lai et al. [19] and Brost et al. [6] even go beyond that and define a stronger notion that they call soundness.
Intuitively, soundness requires that a corrupt ratelimiter cannot make the server output an incorrect key for
the correct password and vice versa. We argue that this is unnecessarily strong because binding together
with hiding already covers the same scenarios as their soundness definitions. We show that all scenarios are
covered as intended:

– Correct password:
• Correct key: This is the intended behaviour of the protocol.
• Incorrect key: This is not possible as binding ensures that if a key is returned, it is the correct one.
• No key: This is trivially achievable by a corrupt ratelimiter by refusing to answer or by sending an
incorrect proof. This scenario is also not covered by the other soundness definitions.

– Incorrect password:
• Correct key: This is not possible as otherwise, the corrupt ratelimiter could break the hiding property
of the PHE scheme.

• Incorrect key: This is not possible as binding ensures that if a key is returned, it is the correct one.
• No key: This is the intended behaviour of the protocol.

Therefore, we capture the above requirement in a novel definition that we call binding. In the binding
game, the adversary is given access to an encryption and a decryption oracle. In both games, the adversary
provides all inputs to the server, including the server’s secret key and the used randomness. The adversary
wins if it can interact with the honest server in two protocol runs using the same server secret key, ratelimiter
public key, and ciphertext but still make the server output two different keys. We formally define binding in
Definition 3.

Definition 3 (Binding). A password-hardened encryption scheme PHE is binding if, for any PPT adver-
sary A there exists a negligible function negl, such that for all λ ∈ N

Pr[BindPHE,A(λ) = 1] ≤ negl(λ),

where the randomness is taken over the random coins of all randomized algorithms. The game BindPH,A(λ)
is defined in Figure 4.

4 HildeGUARD

In this section, we propose HildeGUARD, the first round optimal password hardened encryption scheme secure
in a semi-adaptive corruption model. One of our primary design goals in developing HildeGUARD was to
rely exclusively on well-established cryptographic primitives–specifically, elliptic curves, hash functions, and
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Odec(pwd ,C )

1 : S∗ := if Corr = S then A
2 : else S(skS, pwd ,C )

3 : R∗ := if Corr = R then A
4 : else R(skR)

5 : (K , ϵ)← ⟨S∗,R∗⟩dec
6 : return K

OdecCh(C )

1 : ensure Corr ̸= S

2 : ← Odec(pwd
∗,C )

3 : return ϵ

Oenc(pwd)

1 : S∗ := if Corr = S then A
2 : else S(skS, pwd)

3 : R∗ := if Corr = R then A
4 : else R(skR)

5 : ((C ,K ), ϵ)←$ ⟨S∗,R∗⟩enc
6 : return (C ,K )

OencCh()

1 : ensure Corr ̸= S ∧K ∗ = ϵ

2 : (C ∗,K ∗)← Oenc(pwd
∗)

3 : return C ∗

OHonRot(Corr
′)

1 : ensure Corr′ ∈ {S,R,⊥}
2 : ((skS

′, pkR
′, τ), (skR

′, pkS
′))← ⟨S(skS),R(skR)⟩rot

3 : Corr← Corr′

4 : if Corr = S then return skS
′

5 : if Corr = R then return skR
′

6 : return ϵ

ODishonRot()

1 : ensure Corr ∈ {S,R}
2 : S∗ := if Corr = S then A else S(skS)

3 : R∗ := if Corr = R then A else R(skR)

4 : ((skS
′, pkR

′, τ), (skR
′, pkS

′))← ⟨S∗,R∗⟩rot
5 : return ϵ

OUpdate(C )

1 : ensure τ ̸= ϵ

2 : C ′ ←$ Update(skS, τ,C )

3 : return C ′

Fig. 3. Oracles for the semi-adaptive PHE hiding definition.

AES encryption. By avoiding more complex or experimental cryptographic constructions, such as pairing-
friendly curves, we reduce the risk of subtle implementation flaws and side-channel vulnerabilities that often
accompany advanced primitives. This approach allows for a minimalistic codebase that is easier to audit and
maintain.

In the following, let G be a multiplicative finite cyclic group of order q = q(λ) and H{S,R,B,F} : {0, 1}∗ → G
are hash functions. Let ΠEnc be a CCA-secure private-key encryption scheme. If an assertion fails during the
execution of an algorithm, it terminates and returns the special symbol ⊥ to indicate an error.

In HildeGUARD, we use a single nonce n ← HN(nS,nR) that combines the randomness contributed by the
server and the ratelimiter for rate-limiting. To ensure that decryption attempts are bound to this rate-limit,
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BindPHE,A(λ)

1 : Queries := ∅

2 : (i, j)←$AOenc,Odec(1λ)

3 : (skS, pkR,C ,K ) := Queries[i]

4 : (skS
′, pkR

′,C ′,K ′) := Queries[j]

5 : b0 ← (skS, pkR,C ) = (skS
′, pkR

′,C ′)

6 : b1 ← (K ̸= ⊥) ∧ (K ′ ̸= ⊥)
7 : b2 ← K ̸= K ′

8 : return b0 ∧ b1 ∧ b2

Oenc(skS, pkR, pwd , r)

1 : S =: S(skS, pwd
∗, pkR; r)

2 : ((C ,K ), ϵ)←$ ⟨S,A⟩enc

3 : Queries
∪
= {(skS, pkR,C ,K )}

4 : return ϵ

Odec(skS, pkR, pwd ,C , r)

1 : S =: S(skS, pwd
∗,C , pkR; r)

2 : (K , ϵ)←$ ⟨S,A⟩dec

3 : Queries
∪
= {(skS, pkR,C ,K )}

4 : return ϵ

Fig. 4. PHE binding experiment.

the nonce is used in the computations of the server and the ratelimiter. Besides the nonce, an enrollment
record consists of two components t0 and t1 that are computed as

t0 ← HR(n, 0)
skR · HS(pwd ,n)

t1 ← HR(n, 1)
skR ·K.

The ratelimiter parts of these computations hR,0 = HR(n, 0)
skR and hR,1 = HR(n, 1)

skR can be thought of as

an PRF evaluation on the nonce PRF
{0,1}
skR

(n). Consequently, t0 is–on an intuitive level–the first ratelimiter
PRF multiplied by the salted hash of the password, and t1 the second ratelimiter PRF multiplied by the
encapsulated key. From the server’s perspective, both values are uniformly random because of the pseudoran-
dom values computed by the ratelimiter. To ensure that the record does not leak anything to the ratelimiter,
the whole record has to be encrypted by the server, because the ratelimiter knows the corresponding PRF
key and consequently also the PRF values.

The decryption protocol can be thought of as a password-authenticated key exchange protocol (PAKE),
where the key exchange only succeeds if both parties enter the same password. In contrast to standard
PAKE, the server and the ratelimiter enter the first ratelimiter PRF value hR,0 instead of the password.
While the ratelimiter can directly compute hR,0, the server has to use the correct password to extract the
PRF value from the stored record h′

R,0 ← t0/HS(pwd
′,n). The ratelimiter uses the resulting key to encrypt

the second ratelimiter PRF value hR,1 before sending it to the server. If the entered password is correct, the
server obtains the correct decryption key and can decrypt hR,1 to deblind t1, yielding K.

4.1 Description of HildeGUARD

Encryption Protocol. To generate a new cryptographic key K protected by the password pwd , the server
begins by sampling a random nonce nS and sending it to the ratelimiter. The ratelimiter also samples a
random nonce nR and derives a combined nonce n ← HN(nS,nR). This unified nonce is one of the counter-
measures mitigating malformed ciphertexts when using a semi-adaptive corruption model. To proceed, the
ratelimiter evaluates two PRFs on n, using domain separation via a single bit: it computes hR,0 ← HR(n, 0)

skR

and hR,1 ← HR(n, 1)
skR . Finally, it constructs a Schnorr proof of well-formedness of hR,0 and hR,1 and sends

the PRF values alongside the nonce-share nR, and the proof π to the server. Receiving these values, the
server validates the proof π. As described above, hR,0 is used to blind the salted hash of the password, while
hR,1 is used to blind the cryptographic key K . Consequently, the values t0 and t1 are computed as

t0 ← HR(n, 0)
skR · HS(pwd ,n)

t1 ← HR(n, 1)
skR ·K .
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Setup(1λ)

g ←$ G

crs ←$ ΠNIZK(1
λ)

H{S,R,B,F} ←$ {H : {0, 1}∗ → G}

HN ←$ {H : {0, 1}∗ → {0, 1}λ}
return pp ← (g, crs,H{S,R,B,F,N})

SKeyGen(pp)

skS ←$ ΠEnc.Gen(1
λ)

pkS ← ϵ

return (pkS, skS)

RKeyGen(pp)

skR ←$ Z∗
q

pkR ← gskR

return (pkR, skR)

Fig. 5. The setup algorithms of HildeGUARD.

Finally, the server encrypts the record (t0, t1,n) using its secret key skS and stores the ciphertext. It is
important to note that the encapsulated key is a group element. Before using it outside of HildeGUARD, it
should be processed by a key derivation function to ensure that the key is a uniformly random bit string.
We formally describe the encryption protocol in Figure 6.

Encryption Protocol

Server(skS, pwd) Ratelimiter(skR)

K ←$ G,nS ←$ {0, 1}λ nS nR ←$ {0, 1}λ,n ← HN(nS,nR)

hR,0 ← HR(n, 0)
skR

hR,1 ← HR(n, 1)
skR

stmt ← (HR(n, 0), hR,0,

HR(n, 1), hR,1, g, pkR)

n ← HN(nS,nR) (hR,0, hR,1,nR, π) π ←$ Prove(crs, stmt , skR)

stmt ← (HR(n, 0), hR,0,

HR(n, 1), hR,1, g, pkR)

ensure Verify(crs, stmt , π) = 1

hS ← HS(pwd ,n)

t0 ← hR,0 · hS

// t0 = HR(n, 0)
skR · HS(pwd,n)

t1 ← hR,1 ·K
// t1 = HR(n, 1)

skR · K

C ← EncskS(t0, t1,n)

return (C ,K )

Fig. 6. The encryption protocol of HildeGUARD.

Decryption Protocol. The decryption protocol serves two primary purposes: it authenticates the user by
verifying the candidate password and, upon successful authentication, provides the cryptographic key K
to the user. To defend against online brute-force attacks, both the server and the ratelimiter enforce rate-
limiting via a ratelimit function that tracks the number of decryption attempts per user. This function is
initialized with a fixed quota Qval and aborts the protocol if the limit is exceeded, thereby blocking excessive
login attempts.
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The protocol begins with the server decrypting the ciphertext to recover the tags t0 and t1. It then divides
t0 by the hash of the candidate password HS(pwd

′,n), yielding h′
R,0 = HR(n, 0)

skR if and only if pwd ′ = pwd .
Next, the server derives a group generator h′

B from h′
R,0 using a hash function h′

B ← HB(h
′
R,0). This generator

serves as the base in a Diffie-Hellman-like key exchange. The server begins as in a standard Diffie-Hellman
protocol by sampling an ephemeral secret key rS and sending the public key x← h′rS

B to the ratelimiter.

The ratelimiter computes hR,0 ← HR(n, 0)
skR and also derives a group generator hB ← HB(hR,0). If the

password is correct, the server and the ratelimiter will derive the same generator h′
B = hB. The ratelimiter

then samples an ephemeral secret key rR and computes what would be the final key in a Diffie-Hellman
key-exchange y0 ← xrR . It uses the public key associated with its ephemeral secret key hrR

B as the final key.
To protect the second PRF output, the ratelimiter uses a hash function to derive a one-time pad from the
final key: HF(h

rR
B ). It uses this pad to encrypt hR,1 ← HR(n, 1)

skR , resulting in y1 ← HF(h
rR
B ) · hR,1. Finally,

the ratelimiter sends y0, y1, and a Schnorr proof π–proving the well-formedness of hR,1–to the server.

Upon receiving the ratelimiter’s response, the server “removes” its ephemeral secret key rS from y0
to obtain the final key yrS

−1

0 = h′rR
B . It derives the one-time pad HF(y

rS
−1

0 ) and uses it to decrypt y1:

h′
R,1 ← y1/HF(y

rS
−1

0 ). After validating the proof π, the server recovers K by computing K ← t1/h
′
R,1.

Figure 7 shows the decryption protocol of HildeGUARD.

Decryption Protocol

Server(skS, pwd
′,C ) Ratelimiter(skR)

(t0, t1,n)← DecskS(C )

ratelimit(n)

h′
S ← HS(pwd

′,n)

h′
R,0 ← t0/h

′
S

h′
B ← HB(h

′
R,0), rS ←$ Z∗

q

x← h
′rS
B

(x,n) ratelimit(n)

hR,0 ← HR(n, 0)
skR

hR,1 ← HR(n, 1)
skR

hB ← HB(hR,0), rR ←$ Z∗
q

y0 ← xrR // y0 = h
′rS·rR
B

y1 ← HF(h
rR
B ) · hR,1

stmt ← (HR(n, 1), hR,1, g, pkR)

h′
R,1 ← y1/HF(y

rS
−1

0 ) //
HF(h

rR
B )

HF(h
′rR
B )

· hR,1
(y0, y1, π) π ← Prove(crs, stmt , skR)

stmt ← (HR(n, 1), h
′
R,1, g, pkR)

ensure Verify(crs, stmt , π) = 1

return K ← t1/h
′
R,1

Fig. 7. The decryption protocol of HildeGUARD.

Key Rotation. Key rotation and updates follow a standard approach, where the ratelimiter samples a random
α and updates its secret key by skR

′ ← skR+α. The server updates the public key accordingly and samples a
fresh symmetric encryption key. To update the stored records, the server exploits the key-homomorphism of
the ratelimiter’s PRF by multiplying HR(n, 0)

α (respectively HR(n, 1)
α) to t0 (respectively t1), resulting in
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PRF values consistent with the new ratelimiter key skR
′ = skR+α. It re-encrypts the resulting values t′0, t

′
1,n

with its new encryption key. We formalize the key-rotation protocol and update algorithm in Figure 8.

Key-Rotation Protocol

Server(skS) Ratelimiter(skR)

skS
′ ←$ ΠEnc.Gen(1

λ) α α←$ Z∗
q

pkR
′ ← pkR · g

α skR
′ ← α+ skR

return (skS
′, pkR

′, (α, skS)) return (skR
′, pkS)

Update(skS, τ,C )

parse τ as (α, ¯skS)

(t0, t1,n)← Dec ¯skS
(C )

t′0 ← t0 · HR(n, 0)
α // t

′
0 = HR(n, 0)

skR+α · HS(pwd,n)

t′1 ← t1 · HR(n, 1)
α // t

′
1 = HR(n, 1)

skR+α · K

return C ′ ←$ EncskS(t
′
0, t

′
1,n)

Fig. 8. The key rotation protocol of HildeGUARD.

4.2 Security of HildeGUARD

We give an intuition on why HildeGUARD is secure and defer the formal proofs to the full version of the
paper.

Hiding. We break down the lifetime of a HildeGUARD instance into epochs, where the server’s and ratelim-
iter’s keys of an epoch are independent of the keys of other epochs. We distinguish two cases based on the
corruption.

If the server is corrupt it learns nothing from t0 and t1 because of the pseudorandomness of hR,0 and hR,1.
Furthermore, we show that the adversary can validate only a single password guess per decryption protocol
run with the honest ratelimiter. If it could compute hrR

B for multiple hB to test multiple password guesses, it
breaks the OM-gapDH assumption.

If the ratelimiter is corrupt, it learns nothing from the ciphertext because of the CCA-security of the used
symmetric-key encryption scheme. From interactions with the honest server in the decryption protocol, it
only learns if an entered password was correct from the output of the server. Beyond that, it learns nothing
because the value x is uniformly random because of the blinding with rS.

The ratelimit function restricts the number of decryption protocol runs with honest parties, such that
the adversary can test at most Qlimit passwords.

Binding. Proving that HildeGUARD is binding is relatively straightforward. If the adversary interacts with
an honest server in two protocol runs involving the same ciphertext but different keys, we can extract two
NIZKs that have contradicting statements. Because the same ciphertext is used, we know that also the
same t1 = hR,1 · K and n is used by the server. The two different keys K and K ′ lead to two different
ratelimiter PRF values hR,1 ← t1/K and h′

R,1 ← t1/K
′. The NIZKs provided by the adversary prove that

both hR,1 ̸= h′
R,1 are well-formed which cannot be true. These NIZKs break the soundness of the NIZK

scheme.
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5 Impact

We support our work with implementations and benchmarks, demonstrating both the feasibility of our attack
and the efficiency of our proposed protocol, HildeGUARD. We begin by demonstrating and benchmarking
our attack against simplePHE and Virgil Security’s implementation. Then, we implement HildeGUARD and
benchmark its efficiency, comparing it to SimplePHE.

5.1 Breaking SimplePHE

To demonstrate the feasibility of our attack while adhering to ethical standards, we cloned the latest version of
Virgil Security’s PHE implementation [25] and conducted the attack on a local machine. The implementation,
written in Golang [2], was executed using Go version 1.23.4 on a MacBook Pro equipped with an M3 Pro
chip and 36GB of unified memory, running macOS Sonoma 14.6.1.

The attack involves a malicious ratelimiter reusing a nonce from an honest user’s enrollment record during
the login of a user with a known password. After performing a key rotation and compromising the server, the
attacker uses the malicious password and login record to extract the ratelimiter’s PRF. Using the extracted
PRF, the attacker computes the salted hash of the honest user’s password and initiates a brute-force attack
to recover it. This attack has been implemented and validated on the described system configuration. We
refer the reader to Section 2, a full description of which is given in the paragraph Breaking Simple PHE.

Benchmark of our attack. For testing the feasibility of our attack, we used a password list from SecLists
containing 10 million passwords [21] and selected the secPW uniformly out of it. The brute-force attack
successfully recovered the honest user’s password in all test cases. We evaluated the attack using different
levels of parallelism, varying the number of concurrent workers. The results are summarized in Figure 9.
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Fig. 9. Brute-force attack time with varying worker counts

Our results show that using 128 workers provides a significant speedup, completing the brute-force attack
in approximately 804 ms. However, even with a single worker, the attack remains practical, recovering the
password in just over 5 seconds. We publish the implementation of our attack for review purposes. For an
ethical discussion on this matter, we refer to Section 7.

5.2 Benchmark of HildeGUARD

We benchmark the performance of HildeGUARD against the existing practical PHE scheme Simple PHE
[19]. We do not compare the performance compared to TPHE [6], since this work uses three rounds which
makes it highly unpractical. In addition, the spare latency induced by the number of rounds makes TPHE
meaningles as comparisson.

Our implementation is written in Rust and compiled using rustc 1.84.0. It utilizes curve25519-dalek
4.1.3 for elliptic curve operations and AES-GCM for encryption.
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Cryptographic Benchmark Results. To evaluate the efficiency of our implementation, we benchmark Hilde-
GUARD against SimplePHE across the cryptographic operations. Our tests were conducted on a MacBook
Pro with an M3 Pro chip and 36GB of unified memory, running macOS Sonoma 14.6.1. The benchmarking
framework is powered by Criterion, and multi-threading is managed using tokio with rt-multi-thread en-
abled. Table 1 and Figure 10 present the execution times (in microseconds) for HildeGUARD and SimplePHE
across different cryptographic steps.

Table 1. Cryptographic Benchmark Comparison: HildeGUARD vs. SimplePHE. Time is measured in µs.

Step HildeGUARD SimplePHE

R.encrypt 132.7 130.42
S.encrypt init 5.74 -
S.encrypt finish 166.83 248.21

S.decrypt init 43.57 38.98
R.decrypt 168.02 127.58
S.decrypt finish 142.78 213.24
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Fig. 10. Filtered Cryptographic Benchmark: HildeGUARD vs. SimplePHE

Encryption results show that R.encrypt performs similarly in both schemes (132.7 µs for HildeGUARD
vs. 130.42 µs for SimplePHE). However,
S.encrypt finish in HildeGUARD is faster (166.83 µs vs. 248.21 µs), reducing the total encryption time. For
decryption, S.decrypt init is identical for both schemes (43.57 µs vs. 38.98 µs), while S.decrypt finish

is faster (142.78 µs vs. 213.24 µs). R.decrypt is slower in HildeGUARD (168.02 µs vs. 127.58 µs), leading
to a small overhead at the ratelimiter. Overall, HildeGUARD reduces the computational cost of server-side
encryption and decryption but introduces some additional cost at the ratelimiter. However, these differences
do not impact authentication latency as we explore in the online performance benchmark.

Online Performance. To evaluate encryption and decryption latencies in a real-world setting, we deployed
our prototype on AWS EC2 c5.2xlarge instances, equipped with an Intel(R) Xeon(R) Platinum 8000
series processor featuring eight virtual CPUs and 16 GiB of memory. The servers run an Actix web server
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(version 4) to handle requests. Performance evaluations were conducted under varying network latencies.
We measure latencies using Apache Benchmark 2.3 and report averages over 1000 interactions in Table 2.
The validation time for HildeGUARD is 50.3 ms, while SimplePHE achieves a slightly lower value of 49.668
ms. The observed differences are beyond the variance introduced by network latency, which aligns with our
analysis of the cryptographic core.

To isolate the cryptographic overhead, we also benchmarked a “dummy implementation” where the
web server simply responds to requests without performing any cryptographic operations. This dummy
benchmark includes one round of communication between the server and the ratelimiter. Interestingly, some
validation times for SimplePHE and HildeGUARD are slightly lower than the dummy’s 50.429 ms response
time. This confirms that the cryptographic operations introduce negligible overhead compared to the overall
request handling and network communication. Both schemes share the same round complexity, meaning that
differences in execution time primarily stem from cryptographic operations rather than additional protocol
steps.

Table 2. Online Performance Benchmark: HildeGUARD vs. SimplePHE. Time is measured in milliseconds.

Scheme Enroll (ms) Validate (ms)

HildeGUARD 49.789 50.3

SimplePHE 50.758 49.668

Dummy 50.429

5.3 Deployment

We have demonstrated an attack against SimplePHE and introduced HildeGUARD as a more secure alter-
native. For systems where SimplePHE is already deployed, we provide a seamless migration strategy to
transition ciphertexts from SimplePHE to HildeGUARD without requiring password re-enrollment or user
interaction. Additionally, we describe how HildeGUARD can be integrated into systems that currently use
salted hashes for password security. This ensures compatibility with existing authentication frameworks
while enhancing security. Finally, we address a critical limitation of PHE schemes: their reliance on a specific
ratelimiter, which undermines robustness. If the ratelimiter’s service becomes unavailable–whether due to
termination, service disruptions, or infrastructure changes–all ciphertexts stored on the server become unus-
able. To enhance system robustness and resilience, we propose an opt-out mechanism that allows a seamless
transition from HildeGUARD back to traditional salted and hashed passwords. This approach ensures that de-
ployments can switch authentication methods or replace the ratelimiter without compromising the usability
of existing records.

Migration from Salted Hash. We demonstrate how to migrate an existing authentication system from hashed
passwords to HildeGUARD while preserving compatibility with legacy storage. Inspired by Facebook’s Pass-
word Onion [22], we use the stored salted and hashed password as the input password for our PHE scheme.
Besides that, the HildeGUARD encryption protocol stays as is.

Our experiments validate the practicality of adopting HildeGUARD without user involvement. To measure
the computational overhead of this migration, we benchmarked the enrollment and verification process of
one million hashed passwords. The results, summarized in Table 3, show that encryption–mapping hashed
passwords to HildeGUARD-protected ciphertexts–completed in 48.18 seconds, averaging 0.0482 ms per user.

Importantly, this initial migration can be performed locally by the server without any interaction with the
future ratelimiter. During the process, the server generates the ratelimiter’s secret key and performs the rate
limiter’s part of the encryption process locally. Once the migration is complete, the server securely transfers
the secret key to the ratelimiter and erases it from local storage. This temporary exposure of the ratelimiter’s
secret key to the server does not introduce any additional security risks. At this stage, a malicious server
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could already copy the unprotected database and perform a dictionary attack, as the data has not yet been
protected by the ratelimiter.

Table 3. Migrating one million users from salted hash to HildeGUARD

Operation Total (s) Average per User (ms)

Encryption 48.181 0.0482
Verification 53.172 0.0532

Opt-Out. The primary advantage of PHE is its enhanced security for users. However, in practice, service
providers require flexibility to adapt their authentication mechanisms over time. Locking in on a single
cryptographic scheme can hinder long-term maintainability. To address this, we introduce opt-out for PHE,
a method for transitioning from PHE-protected records back to traditional salted hashes. This follows a
concept that Jia et al. introduced for PH [18].

Opt-out enables providers to migrate to a different authentication scheme or replace the ratelimiter
without requiring user interaction. Opt-out takes place when the ratelimiter’s service should be discarded.
Therefore, we assume a service provider knows both the server’s key and the ratelimiter’s key. Even though
this might seem like a severe security risk that renders the whole scheme useless, we argue why it is reasonable
to do so. First of all, the sole purpose of the opt-out functionality is to release the ratelimiter from its duty,
enabling the server to verify passwords on its own. Therefore, we no longer need the security that the secrecy
of the ratelimiter’s secret key provides. Furthermore, the opt-out protocol is executed only after the server
and the ratelimiter agree to proceed through an out-of-band process.

HS(pwd ,n)← t0/hR,0

K ← t1/hR,1.

The resulting salted hash of the password is used to compute two new tokens. One is solely for verifying
an entered password, while the other one stores the key. To achieve domain separation, hS is hashed with a
single bit as a domain separator. The first token consists only of this hash t′0 ← H(hS, 0), while the second
token is the key blinded by the second hash t′1 ← H(nS, 1) ·K . The formal definition of the opt-out algorithm
can be seen in Figure 11.

It is essential that the opt-out procedure does not expose passwords directly. Furthermore, the resulting
enrollment record must offer at least the same level of protection against dictionary attacks as a standard
salted password hash.

Given a stored HildeGUARD record, the opt-out process proceeds as follows. The service provider first
reconstructs the ratelimiter’s contribution to the ciphertext by computing the PRF outputs:

t′0 ← t0/hR,0 = HS(pwd ,n)

t′1 ← t1/hR,1 = K .

These values are used to obtain the hashed password and the encapsulated key from the ciphertext:

HS(pwd ,n)← t0/hR,0

K ← t1/hR,1.

The resulting salted password hash HS(pwd ,n) is used to derive two separate tokens: one for password
verification and another for storing the cryptographic key. Domain separation is achieved by hashing hS with
a distinguishing bit. Specifically, the first token is t′0 ← H(hS, 0), and the second token is t′1 ← H(hS, 1) ·K ,
which conceals the key. The formal description of the opt-out algorithm is provided in Figure 11. We
benchmarked this opt-out procedure for HildeGUARD and the opt-out completes in 63.92µs per ciphertext
on average.
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Opt-Out(skS, skR,C )

(t0, t1,n)← DecskS(C )

hS ← t0/HR(n, 0)
skR ,K ← t1/HR(n, 1)

skR

t′0 ← H(hS, 0), t
′
1 ← H(hS, 1) ·K

C ′ ← EncskS(t
′
0, t

′
1,n)

return C ′

Fig. 11. The opt-out algorithm of HildeGUARD.

Migration from SimplePHE. The opt-out mechanism not only allows migration from HildeGUARD to tradi-
tional salted hashes but also enables a seamless transition from existing PHE schemes, such as SimplePHE,
to HildeGUARD. This is crucial for providers seeking to upgrade their security model without requiring user
action.

To migrate from SimplePHE, the provider first applies the opt-out procedure to extract the salted hash
of the password. This process follows the same steps as transitioning from HildeGUARD to salted hashes:
computing the ratelimiter’s PRF values, stripping the ratelimiter’s contribution, and recovering the hashed
password. Once obtained, this salted hash is used as the password input for HildeGUARD, ensuring compat-
ibility with existing credentials. Re-enrollment into HildeGUARD follows the standard encryption workflow,
using the extracted salted hash in place of a plaintext password.

6 Conclusion

In this work, we revisited the security of Password-Hardened Encryption (PHE) and identified a critical
vulnerability in its formal model. We demonstrated a practical attack that allows offline brute-force recovery
of passwords, highlighting the necessity of a more comprehensive security framework. Our findings emphasize
that security definitions must align with real-world deployment scenarios, particularly in the presence of key
rotations.

To address these shortcomings, we introduced HildeGUARD, a novel PHE scheme that remains secure even
under adaptive corruptions. We formalized a refined security model, ensuring robustness against the identified
attack while maintaining efficiency. Our implementation and benchmarks demonstrate that HildeGUARD not
only mitigates the vulnerabilities of SimplePHE but also achieves comparable performance.

Beyond theoretical contributions, we provide a migration strategy for transitioning existing PHE de-
ployments to HildeGUARD and offer integration pathways for systems relying on traditional salted hashes.
Our work underscores the importance of continuous scrutiny in cryptographic protocol design, ensuring that
practical deployments uphold security guarantees against evolving threats.

Open Science

To facilitate transparency, reproducibility, and further research, we publicly release our attack and prototype
implementations. The full codebase is available at:

https://github.com/pGerhart/Attack-SimplePHE

https://github.com/pGerhart/HildeGUARD

https://github.com/pGerhart/SimplePHE

7 Ethics Considerations

This research adheres to established ethical principles in cybersecurity research. We do not exploit vulnera-
bilities in deployed systems or compromise real user data. Instead, our work identifies a design flaw in Virgil
Security’s PHE protocol and demonstrates its feasibility in a controlled environment.
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Responsible Disclosure. Following ethical best practices, we engaged in responsible disclosure with Virgil
Security prior to publication. We provided a detailed report outlining the attack, its security implications,
and possible mitigations. This ensured that the vendor had an opportunity to address the issue before public
disclosure, aligning with the principles of coordinated vulnerability disclosure.

Compliance with the Menlo Report. Our study aligns with the ethical principles set forth in the Menlo
Report, which extends traditional research ethics to the field of cybersecurity:

– Respect for Persons: Our research does not target real users or deployed systems. All experiments
were conducted on a locally controlled instance of the protocol.

– Beneficence: The goal of our work is to strengthen security, not to facilitate attacks. By responsibly
disclosing our findings, we help prevent potential misuse.

– Justice: The identified vulnerability has broad implications for users relying on PHE-based authentica-
tion. Our research ensures that security risks are addressed equitably.

– Respect for Law and Public Interest: We operate within legal and ethical boundaries, following
responsible disclosure procedures and ensuring that no unauthorized access occurs.

Post-Publication Plans. We publicly release our implementation for verification and transparency. However,
we do not provide a direct exploit, preventing misuse while enabling security researchers and vendors to
evaluate and improve their implementations. By adhering to these ethical guidelines, we ensure that our
work contributes to the security of cryptographic protocols without introducing harm or facilitating real-
world attacks.
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