Automated Analysis and Synthesis of
Message Authentication Codes

Stefan Milius
Friedrich-Alexander-Universitiit
Erlangen-Niirnberg
stefan.milius@fau.de

Lutz Schroder
Friedrich-Alexander-Universitiit
Erlangen-Niirnberg
lutz.schroeder @fau.de

Abstract—Message Authentication Codes (MACs) represent
a fundamental symmetric key primitive, serving to ensure the
authenticity and integrity of transmitted data. As a building
block in authenticated encryption and in numerous deployed
standards, including TLS, IPsec, and SSH, MACs play a central
role in practice. Due to their importance for practice, MACs have
been subject to extensive research, leading to prominent schemes
such as HMAC, CBCMAC, or LightMAC. Despite the existence
of various MAC:s, there is still considerable interest in creating
schemes that are more efficient, potentially parallelizable, or have
specific non-cryptographic attributes, such as being patent-free.

In this context, we introduce an automated method for analyzing
and synthesizing MAC schemes. In order to achieve this goal,
we have constructed a framework that restricts the class of
MAC:s in such a way that it is sufficiently expressive to cover
known constructions, yet also admits automated reasoning about
the security guarantees of both known and new schemes. Our
automated analysis has identified a novel category of MACs,
termed '"hybrid"' MACs. These MACs operate by processing
multiple blocks concurrently, with each block managed by
a different, specified MAC scheme. A key finding is that in
certain scenarios, the hybrid MAC marginally outperforms the
simultaneous operation of the individual MACs. This improvement
is attributed to the hybrid approach exploiting the strengths and
compensating for the weaknesses of each distinct MAC scheme
involved. Our implementation confirms that we have successfully
identified new schemes that have comparable performance with
state-of-the-art schemes and in some settings seem to be slightly
more efficient.

Index Terms—symmetric-key authentication, program synthesis,
pseudorandom function

I. INTRODUCTION

Message Authentication Codes MAC are fundamental cryp-
tographic building blocks that serve as the symmetric key
counterpart to digital signature schemes. The generation and
validation of a tag T for a given message M require the
involvement of a private key K. MACs are utilized extensively
in practical applications, serving both as essential components
in authenticated encryption [1] and as integral parts of various
established standards, including TLS [2], IPsec [3], and

* Corresponding author

Dominik Paulus
Friedrich-Alexander-Universitiit
Erlangen-Niirnberg
dominik.paulus @fau.de

Dominique Schroder
TU Wien
dominique.schroeder @tuwien.ac.at

Julian Thomas*
Friedrich-Alexander-Universitdt
Erlangen-Niirnberg
julian.thomas @fau.de

SSH [4]. Given their significance, MACs have been subject
to extensive research, leading to the discovery of a diverse
array of constructions based on various building blocks. These
realizations include block cipher-based approaches, such as
ECBCMAC [5], hash-based techniques, such as HMAC [6],
[7], [8], and modern variants leverage special mathematical
concepts, such as SpongeMAC [9]. Many of these schemes
are standardized emphasizing their importance in real-world
applications [8], [10], [11]. In the design of efficient MAC
schemes, there is a risk of overlooking potential opportunities
to enhance efficiency. For instance, CBCMAC [12] has a long
history of improving both efficiency and security. CBCMAC is
vulnerable to length extension attacks, while ECBCMAC [13]
addresses these vulnerabilities. XCBCMAC [14] advances
the design by requiring three independent keys. Subsequent
developments include TMAC [15], which requires two keys,
and OMAC [16], which operates with just one key.

In this work, we present an automated approach for analyzing
and synthesizing MAC schemes. Our methodology follows
a graph-based approach similar to an automated approach
for authenticated encryption schemes by Hoang, Katz, and
Malozemoff [17]. However, their approach relies on tweakable
blockciphers, which are not used in the construction of MAC
schemes and therefore cannot be used to cover current MAC
schemes.

At a high level, the evaluation of the MAC is represented
by a directed acyclic graph in which each node represents an
instruction, such as an XOR of two values. The MAC must
process messages of arbitrary length, which is modeled by
splitting the MAC into three parts: initialization, iteration, and
finalization. As these names suggest, initialization and finaliza-
tion are responsible for pre- and post-processing, respectively,
while the iteration block is a fixed description that iterates over
all message blocks.

We develop a type system for the nodes of such graphs and
define constraints on how nodes can be typed based on their
parents’ types. We then demonstrate that any well-typed graph
defines a secure MAC scheme. This enables us to automatically

analyze a given scheme by checking whether the graph defining
the scheme can be properly typed. Building on this, we can
synthesize schemes by enumerating valid graphs and analyzing
each one to determine its security.

Many existing MAC schemes satisfy our criteria, demonstrat-
ing that our framework is not overly restrictive. In particular, we
obtain automatic security proofs for ECBCMAC, FCBCMAC,
LightMAC, NMAC, XCBCMAC, OMAC, and TMAC. We
also cover HMAC under the idealized assumption of two
independent keys.

We implemented our framework in C++14 and provide the
source code under an open source license!. This allowed us
to synthesize thousands of secure MAC schemes, hundreds
of which are optimal in terms of the number of calls to the
underlying pseudorandom function, comparable to OMAC or
XCBCMAC. We also obtain similar optimality results with
respect to the number of keys. These schemes are provably
secure, as verified by our analysis tool, and come with concrete
security bounds.

Our automated synthesis has revealed a new class of MACs,
which we term hybrid MACs. A MAC is classified as hybrid
if the iteration graph processes multiple message blocks,
which opens up the possibility to combine different MAC
schemes. Notably, the parallel hybrid MACs stand out for their
performance. Our findings indicate that these hybrid MACs can
slightly outperform individual MACs in certain setups. This
improvement arises because the hybrid approach leverages
the strengths and mitigates the weaknesses of each individual
scheme.

Among the many possible parallel hybrid MACs, this paper
takes a closer look at the combination of CBCMAC variants
and LightMAC. We implement two of these hybrid schemes
and find that their running times are comparable to those of
LightMAC and PMAC [18]. In some settings, particularly with
larger messages, they even slightly outperform them. Therefore,
these schemes may appeal to practitioners seeking efficient,
straightforward, and patent-free MAC schemes for enhanced
efficiency optimization in large-scale computational facilities.

A. Related Work

Barthe et al. [19] study the automated analysis and Tiwari et
al. [20] the automated synthesis of cryptographic primitives,
both with application to RSA-based encryption schemes.
Following that, Barthe et al. consider an automated analysis of
assumptions in generic groups [21], which is foundational for
their subsequent work on the automated synthesis of signatures
with certain properties [22]. Regarding signatures, Akinyele
et al. [23] present an automated tool for generating batch
verification schemes. Gagné et al. [24] discuss an approach
based on Hoare Logic to verify the almost universality property
of a hash function automatically.

Carmer and Rosulek [25] provide a more general approach
to automated analysis and synthesis within the Linicrypt

'During review, the code is provided with the supplementary material. After
the paper’s acceptance, we provide an open-source link here instead.

framework, by describing algorithms with linear operations and
random oracle access algebraically. Due to the random oracle,
the analysis of hash functions by McQuoid et al. [26] and Javar
and Kapron [27] is evident within the Linicrypt framework.
Similarly, Hollenberg et al. [28] analyses the instantiation of
the random oracle with block ciphers.

Another common approach, which we expect to provide more
modularity and detailed analysis, is the graph-based description
of algorithms. Malozemoff, Katz, and Green [29] pioneered
this research field for cryptography by automatically generating
secure block-cipher modes. Later, Hoang, Katz, and Maloze-
moff [30] extended this approach to authenticated encryption
schemes. While the Encrypt-then-Mac paradigm [1] can provide
authenticated encryption, Hoang, Katz, and Malozemoff [30]
focus on efficient authenticated encryption schemes that do not
separate encryption and authentication. Although one could
devise a function that maps from the generated authenticated
encryption schemes to MACs, due to the focus on efficiency
and correctness in [30], this would only cover a small subset
of the possible MAC schemes. Summing up, a comprehensive
coverage of MAC constructions is missing.

II. PRELIMINARIES

Notation. Let maps(X,Y’) be the set of all functions from
domain X to codomain Y. For a finite set S, we denote
sampling an element = uniformly from S by x < S. When n is
some integer less than 2, then (n); is the binary representation
of n when padded to exactly ¢ bits. For two bit-strings = and
y, we denote concatenation with x|y, and if and y are of the
same length, x @y denotes their bitwise XOR. We use negl(n)
to describe an arbitrary negligible function f: N — R*, that
is, a function that decreases faster than the inverse of any
polynomial. The security parameter is A, and when referring
to something as negligible, we mean negligible in A.

We use the code-based game-playing framework of Bellare
and Rogaway [31]. Here, an adversary .4 always uses a
probabilistic polynomial time PPT algorithm. We denote the
execution of A with Oracle access to Oq, ..., O, using inputs

T1,...,Tm, and output b by A9 On(xy ... x,) =b.

Pseudorandom Functions and Permutations. A function
F: {0,1}* x {0,1}™ — {0,1}! is a pseudorandom function
PRF if every PPT attacker A can distinguish F from a real
random function only with negligible probability [32]. A
random function is chosen uniformly from the same function
family, i.e., the set of all functions with the same mapping.
If, additionally, m = [and F(K,-) is bijective for every
K € {0,1}*, then F is a pseudorandom permutation PRP [33].

In the following, we consider PRP as an abstraction of block
ciphers. Regarding block ciphers, we consider variable-length
messages M, denoting the ith block as M [i]. Unless otherwise
specified, we generally use the designators F for PRF, P for
PRP, f, g for arbitrary functions, and p for bijective functions
(permutations).

Hash Functions. We consider a keyed hash function
H: {0,1}* x {0,1}* — {0, 1}!, compressing arbitrary length

input to an output of fixed length I. We assume K < {0, 1}*
in this paragraph. Carter and Wegman [34] introduced the
concept of universality of hash functions.

The idea is that a function family is universal if a certain
property holds for any function randomly chosen from that
family. For simplicity, we refer to a fixed function instantiated
by a uniformly chosen key, rather than explicitly to the entire
function family.

Specifically, we call a hash function H wuniversal
if for all z,y € {0,1}* such that x # y, we have
Pr[H(K,z) = H(K,y)] < 2L, This can be understood as a

more general definition of collision resistance [32]. A hash
function is strongly universal if for any x1,2o € {0,1}*
such that 7 # w5 and any yp,y2 € {0,1}!, we have
PrH(K,z1) =y1 AH(K,25) =y2] = 272 [35]; this
can be weakened to e-almost (strong) universality,
where the collision probability is relaxed from 1/2' to
e/Ql with ¢ > 1 [36]. A computational relaxation is
provided by Bellare et al. [7]: The hash function H is
computationally almost universal if the advantage Adv’'y =
Pr[AN = (z,y) where # y : H(K, z) = H(K,y)] s
negligible.

Message Authentication Codes. A message authentication

code MAC is an algorithm computing a tag to verify a

message’s integrity and authenticity. A message authentication

code IIpmac consists of the following three PPT algorithms:

KGen: {0,1}* — {0,1}*: The probabilistic key-generation
algorithm outputs a key K depending on .

Mac: {0,1}* x {0,1}* — {0,1}*: The tag-generation algo-
rithm takes as input a key key and a message M it
returns a tag 7. We call the construction fixed-length if
the message length is fixed by some value.

Vrfy: {0,1}* x {0,1}* x {0,1}* — {0,1}: The determinis-
tic verification algorithm takes as input a key K, a message
M, and a tag T'. It outputs a bit b, where b = 1 confirms
the validity of 7" and b = 0 indicates invalidity.

For correctness we require Vrfy(K, M,Mac(K,M)) = 1
for all A € {0,1}*, all messages M € {0,1}*, and every key
K output by KGen(1%). We assume canonical verification for
all deterministic MAC schemes unless otherwise noted, i.e.,
the verification recomputes the MAC and compares the result
with the provided tag.

Regarding security, we use the notion of strong unforgeability.
Intuitively, it states that forging a new and valid message-tag
pair for a MAC scheme is difficult, even if the attacker has
access to an oracle that computes tags on messages of its choice.
We define the corresponding game SUF 4 11,,,. as follows:

SUF 4 11y (V) Omac (K, M)

1: Q« 0, K <sKGen(1) 1: T+ Mac(K, M)
2: (M, T) + AMac(K:0) 2: QuU{(M,T)}
3: if (M,T) g Q) A(Vrfy(M,T)=1) 3: returnT

4: return 1

5: return0

A message authentication code IIyac = (KGen, Mac, Vrfy)
is strong existentially unforgeable under an adaptive chosen-
message attack, or just secure, if

Pr[SUF 4 myac (A) = 1] < negl(\)

holds for all PPT adversaries A.

Note that a keyed PRF directly yields a secure fixed-
length MAC scheme [32] with canonical verification, that is,
Vrfy(K, M, T) recomputes Mac(K, M) = T” and returns 1
if T =T and 0 otherwise. Our framework will utilize that
the eventually stronger than necessary property of pseudo-
randomness fulfills the security guarantees of the SUF 4 -
experiment.

III. THE MAC FRAMEWORK

We present a graph-based abstraction of MAC schemes,
where nodes represent computations and their types, determined
through our automatic type inference, indicate their properties.
We then establish a secure construction of variable-length MAC
within this framework.

A. A Graph-Based Representation of MACs

T
SICE Ji:

Fig. 1: The left shows a common ECBCMAC representation,
while the right shows the graph-based abstraction of our
framework. Dashed lines delineate the three separate subgraphs.

JLI m

Our graph-based representation is inspired by common MAC
constructions (We refer the reader to the appendix of the full
version for a comprehensive summary of MAC constructions;
see Figure 1 for a concrete example) resulting in a tripartite
graph system: the initialization (G1), the iteration (G3), and the
finalization (G3). We assign each node within the subgraphs a
computation label. These represent either calculations (e.g. con-
catenation CONCAT), data blocks (e.g. message blocks INM),
or administrative concepts (e.g. final result OUTP). Table I
shows the possible computation labels. We connect the sub-
graphs by an edge between the output state OUTS of G;_;
and the input state INS of G;, denoted by G;_1||G;. Thus,
for a MAC scheme S, we create one copy of G; and G3
and c copies of Gy, such that S = G1||G3|| -+ ||G5||G5. The
messages scheme S computes are split into blocks and assigned
to the INM nodes of the subgraphs. Figure 1 shows an example
of this graph-based abstraction using a common scheme.

Further Notations. We use an evaluation function
Eval(F, X, G, M,i) to compute the result of a node with index
i < |V, where we generally write |!| for the length of a list [,
for a graph or subgraph G with nodes V' and number of

Name In Out | Intuitive description

CONCAT | 2 1 Concatenates both inputs

XOR 2 1 XORes both inputs

PRF; 1 1 Invokes a PRF using key K

CTR 0 1 Returns a global counter value

INM 0 1 Loads an additional message block
INS 0 1 Loads previous computation state
OuUTS 1 0 Stores the current computation state
ouTP 1 0 Stores the resulting computation state

TABLE I: Computation labels for the operations a node can
represent, including the /n-degree and Out-degree.

nodes |V| (see Figure 3 for details). Here, M is a message, F
instantiates the PRF; nodes and K is a keyset containing the
keys for the PRF; nodes. The graph G is always completely
traversed along a given order of the nodes, which is crucial
because isomorphic graphs can produce distinct results due to
the implicit state carried by the last CTR output. We denote
the output state, the intermediate result after node i, by Z;.
All INM-nodes that are not predecessors of node ¢ and all
INS without a corresponding OUTS node are assigned the
value 0*. This prevents side effects, such as incrementing
the counter-variable, when iterating over unused parts of the
graph. As a result, the graph traversal order and nodes remain
independent of the index :. Additionally, it ensures that the
CTR nodes in the finalization subgraph remain unaffected by
the message length. This design decision for CTR is inspired
by LightMAC [37].

We denote the set of all possible computation labels by L. A
graph G = (V, P) € L* x (N*)* consists of two lists: A list V'
of node labels, where V7] is the label assigned to the ith node,
and a list P containing a set of parent nodes for each node. Note
that we assume the first index to be 1. We require |V | = |P].
We write u — v if u € P[v], and draw a corresponding edge in
the graphical depiction, indicating that the result of node w is
used as input for the computation at node v. A path is a list of
nodes u1, ..., Uy, such that u;_1 € Plu;| fori =2,... ,n. Ifa

path from a node u to a node v exists, then we write © —1 v.

We will use the notation pred(u) = {v |0 < v < |[V],v =T
u} for the set of all ancestors of a node u in a graph and
rel(u) = pred(u) U{v |0 < v <|V|,u =T v} U {u} for all
nodes related to wu, that is, all nodes that are either reachable
from wu or are predecessors of w.

Constraints. We only consider graphs that satisfy the following
constraints: The graph G is acyclic. The in- and outdegrees of
nodes obey the constraints in Table I. Moreover, we require
the number ¢; of nodes with a certain label within subgraph
G; to be as follows: for INS, ¢; = 0, co = 1, ¢35 = 1; for
OUTS, c1 = 1, Cy = 1, Cc3 = 0; for OUTP, c1 = O, Cy = O,
c3 = 1; and for INM, ¢; > 0, co > 1, c3 > 0. A graph is
well-formed if it adheres to these constraints. A well-formed
graph is necessarily an in-tree, with either OUTS or OUTP
being the root and all leaves being labeled either INM, INS,
or CTR. Finally, we only consider message sizes that are
multiples of A\. The INM nodes represent the corresponding
message blocks of size A\. We do not restrict the input size of

a PRF; node, but we assume the output to be of size A.

B. The Type System

A typing for a graph G is a function 7" that assigns to each
node 7 a type tuple ¢ = (TYPE,DIST,KEYS, LEN) adhering to
the rules of the type system as specified next. We denote the
type tuple assigned to node ¢ by ¢;, and the elements of this
tuple by TYPE;, DIST;,KEYS;, and LEN;, respectively. The type
of a graph is the type tuple of its final node. In the following,
we describe the four components of a type tuple in detail.

Type. The assertion about the behavior of a function computed
by the subgraph rooted at node 7 is given by TYPE; €&
{L, CONST, AU, PU, PRF}. Fix some graph G and a node %, then
TYPE,; asserts the following statements:

TYPE; | Description

1L Universally valid

CONST | Node ¢ has a constant value independent of the input
AU Eval(F, K, G, M, 1) is an universal function

PU Eval(F, XC,G, M, 1) is strongly universal function
PRF Eval(F,XC,G, M, 1) is a secure PRF

Section II describes the properties AU (universal function), PU
(strongly universal function), and PRF (pseudorandom function)
in more detail. We introduce CONST to differentiate between
INM and CTR nodes in the respective subgraphs since an
adversary may control the input message but not the counters.

Dist. In contrast, the distribution property DIST; €
{L,CR, AIU} relates two different nodes in a graph G, which
is especially relevant for nodes with two parents (XOR and
CONCAT). Thus, DIST; asserts the following statements:

DIST; | Description

1 Universally valid

CR Node 7 is collision-free for all unrelated nodes
ATU Node ¢ is almost independent and uniform

We regard the assignment DIST; = CR as correct if the
probability for a collision between the value at node ¢ and all
unrelated nodes typed CR or AIU is negligible. We specify the
requirements for DIST; = AIU as follows: First, the values at
node ¢ have to be uniformly distributed. Second, all values
at pairwise unrelated nodes that are also cast DIST = AIU
have to be jointly independently distributed. In both cases, the
deviation is at most negligible.

Intuitively, TYPE is an assertion about how the value at some
node relates to values at the same node for different input
messages. In contrast, DIST relates the values at some node
with those at other nodes for the same and different input
messages.

The contrast between TYPE and DIST may appear counterin-
tuitive. This becomes more evident by considering the example
graphs in Figure 2. In the left subgraph, both results of the
PRF invocations (edge (1) and (2)) are the result of a PRF
invocation on the input for the corresponding subgraph. This
would justify TYPE; = TYPE; = PRF for both nodes. However,
they are not distributed independently. An adversary could
input the same message block for both INM nodes. Then, the

1 (0)) 3 Q)

Fig. 2: Example graphs to emphazise the distinction between
TYPE and DIST.

PRF nodes output the same value, and the output of XOR
consists of only zeroes.

In the right graph, both inputs to CONCAT are collision-
resistant, as the CTR node indicates. This justifies DIST = ATU
for the result of the output nodes of edges (3) and (4). However,
the functions computed by these nodes fall short of achieving
AU. Assume input pairs like (A, A) and (B, B). Again, the
XOR block output only consists of zeros. Thus, the appropriate
typing for edges (3) and (4) is TYPE3 = TYPE, = L.

The labels TYPE and DIST may be refined stepwise. Specifi-
cally, in Lemma III.1 we identify a (partial) ordering on TYPE
and DIST such that 1. < CONST, 1 < AU < PU < PRF, and
1 < CR < AIU, respectively.

Keys and Length. KEYS; C N denotes the set of keys used
in the computation of Eval(F,KC,G, M,i). If K; ¢ KEYS,,
then there is no path from a node labeled PRF; to node <.
Finally, LEN; € N denotes the length of the corresponding
output block at node ¢, thus LEN; is the length of the block
output by Eval(F, K, G, M,i).

C. Type Inference on Graphs

We now provide an intuition for the type inference algorithm.
We use this algorithm to assign the types from the type
system to the nodes of a graph, in order to automatically
analyze whether a graph represents a secure MAC scheme.
See Appendix VII for a comprehensive summary of technical
details.

First, we summarize the components of our framework and
their relations. We are given an acyclic graph, which represents
a sequence of calculations based on the computation labels of
the nodes. The evaluation function (see Figure 3) performs the
calculations any subgraph of the given graph represents. The
type inference analyzes the properties of this function. In doing
so, it assigns the types of the type system to the nodes. If we
analyze a graph resembling a MAC scheme completely, and
TYPE = PRF holds for the last node, then we can conclude
security for this scheme, which we prove in Theorem IIL.8.

The algorithm begins with the INM and CTR nodes, which
have no parent nodes. Initially, we assign them the fundamental
properties that apply to message blocks and counters. For INM

this includes TYPE = AU. Considering the evaluation function
in Figure 3 we see that on input M (of size \), the function
assigns M to the intermediate result and outputs it afterward.
This is the functionality of the identity function, which is
(almost computationally) universal AU since two different inputs
will always result in two different outputs.

The proof of Theorem III.3 summarizes these arguments for
the (nontrivial) assignments and provides an argument for the
soundness of the inference algorithm. Since our given graph
is acyclic, we can proceed by well-founded induction over it.
In the base case we treat the INM and CTR notes. In the
induction step we assume that the parent nodes of a node have
already been assigned a typing, and we prove that the typing
of that node is correctly inferred by the algorithm.

The functionality of CONCAT and XOR nodes is combin-
ing two subgraphs. As these strongly depend on the parent
nodes, the associated assignment rules are detailed. Note that
CONCAT takes over the weaker of the two properties, whereas
XOR can adopt the stronger property.

We base the security of our construction on pseudorandom-
ness. Consequently, we need PRF nodes to provide these
properties and ‘strengthen’ (see Lemma III.1) the types, if
possible. Besides some trivial cases, we rely on a result by
Mihir Bellare [7]. To be more specific, if the evaluation of the
subgraph rooted in the parent node is a computational almost
universal function (i.e. TYPE = AU holds for the parent node),
and the PRF node has an independent key, then we can assign
TYPE = PRF to this node. In the case of key dependency, we
conclude TYPE = PU.

We use the administrative nodes OUTS, INS, and OUTP to
connect the subgraphs and indicate the final result. Hence, their
type inference is straightforward. Besides some correctness
checks, those nodes adapt the typing of their parent node.

D. Proof of Correct Typing

This section provides the formal proof of the soundness of
the type inference algorithm. We start by formally stating and
proving the (partial) ordering of TYPE and DIST mentioned in
Section III-B. We say ¢; is valid (i.e. correct)for a node in a
given (sub)graph if the type inference assigns the property of
t1. We say t; is stronger than ¢5 and to is weaker than ¢4, if
ty < t1 holds.

Lemma III.1 (Transitive implication order). Let < be a partial
order on TYPE and DIST such that 1 < CONST, L < AU <
PU < PRF, and 1 < CR < AIU, respectively. If t1 is a valid
TYPE or DIST for node i, and to < tq, then the assertion of ts
is also correct for 1.

Proof. For 1 < CR, 1. < CONST, and 1 < AU, this is trivial.
For CR < AIU, the assertion for nodes to be typed CR also
asserts the collision resistance with AIU typed nodes. The
probability of two unrelated AIU typed nodes colliding is 2.

The relation AU < PU as described in Section II follows
from the definition [35]. Regarding PU < PRF, a PRF must
fulfill strong universality; otherwise, it could be distinguished.
We simplify the reasoning of PU # PRF within the framework,

using the necessity of key independence for a node to be typed
PRF, which is not the case for PU. O

For the main proofs, we use the function IB, which outputs
the number of message blocks as input for a (sub-)graph and
is defined as follows:

Definition IIL.2 (Number of In-blocks). Consider a graph G
and a message M. Let Mg = [k | V(k) = INM] be the list of
INM-nodes contained in G. Then, IB(G, M, 1) is the list of
input message blocks consumed when evaluating the subgraph
rooted at ¢; in symbols: [M,, | x € [1;|Mg|] A Mg[z] =7 1]
if i < |V| or with IB(G, M, |V| — 1) otherwise.

The idea of the type interference is that we can automatically
evaluate whether any given graph implements a secure MAC.
For this, the typing of an arbitrary graph must be correct and
indicate, that the MAC scheme fulfills pseudorandomness (node
OUTP has TYPE = PRF). We base our proof of correct typing
on two theorems. Theorem II1.3 states the correctness of the
typing rules, which we will prove using induction on arbitrary
graphs and under the assumption of a real random function
instead of a PRF.

Lemma III.4 ensures that we can indeed replace the PRF
with a real random function. We prove this using a game-
hopping argument. Figure 9 in Appendix VII summarizes the
corresponding games. For a graph G and randomly sampled
keys K, we use Games, which is presented in Figure 3, as an
oracle for computing the graph with Eval(F, K, G,).

Theorem II1.3 (Correctness of type inference). For any well-
formed (see Constraints in Section IlI-A) graph G with a
typing assigned by the type inference from Section IlI-C, the
evaluation function as implemented in Games satisfies the
assertions implied by the types of TYPE, DIST, KEYS, and LEN.

Proof. We perform an induction proof on the number of
remaining nodes in an arbitrary graph. The base case consists of
the nodes without parents, which are INM and CTR. All other
nodes are part of the induction step since at least one parent
exists. Therefore, we assume the parent node(s) have been
correctly typed. This is possible because the type inference
traverses the circle-free graph in a certain topological order.
LEN and KEYS are correct by construction and are not further
discussed. The administrative nodes, INS, OUTS, and OUTP,
are not considered, as they do not change the types and are
implicitly correct based on the induction hypothesis of correctly
typed parents.

We structure the proof modularly by making a case distinc-
tion for the different node labels. To emphasize this, we slightly
simplify the notation from a common induction proof: We use
i to denote any node in any graph and j and % to denote its
parents if they exist. For every case, we analyze TYPE and then
DIST.

V(i) = INM: Assigning TYPE, = AU is correct because a
single INM-node represents the identity function, which is
universal. Assigning DIST = L is generally correct. The
argument is the same for the base case and induction step.

Games(V, P, \)
for k€ 1,...,|K|: fr +smaps({0,1}*,{0,1}")
s=1

On query (M, 1)

incnt, cnt, state, PMs =1, 1, O>‘, M
for j € {1,...,|V|}:
if V[j] = INM :
if j & pred(i) : Zs; = 0}
else : Zs; = M[incnt], incnt = incnt + 1
elseif V[j] = CTR:
if 3z > j,V(z] = OUTS : Zs; = (cnt)
else :Zg; = (2 —cnt — 1)y
ent =cnt + 1
elseif V[j] = XOR: (p,q) = P[j];Zs; = Zsp ® Zsq
elseif V[j] = PRF; :
(p) = Pl
if (Error) : Zs; < {0, s
else :Zg; = fi1(Zp)
elseif V[j] = CONCAT : (p,g) = Pljl; Zs; = ZupllZeq
elseif V[j] = OUTP : (p) = P[j]; Zsj = Zsp
elseif V[j] = OUTS:
(p) = P[jl; Zsj = Zsp; state = Zg;
if =3z > j,V[z] = OUTS:ent =1
elseif V[j] = INS: Z,; = state
s=s+1

return Z(;_1);

Fig. 3: This game represents the evaluation function Eval for
Theorem II1.3. It outputs the computational result at node ¢
for message M of graph G = (V, P). Here, a real random
function implements the pseudorandom function. This arises
from the game-hopping argument in Lemma III.4. See Figure 9
for technical details regarding an Error to occur.

V(i) = CTR: Assigning TYPE; = CONST is correct. First,
CTR nodes are independent of other nodes, as they do
not have a parent. Second, evaluating the same graph always
yields the same counter value at index ¢, independently of
any input to the graph.

For DIST, we show that V'(4) is collision-resistant to all other
nodes typed CR or AIU. Considering the type inference, CR is
only possible for CTR or CONCAT nodes. The construction
implies the different length of CONCAT, so there can only
be a collision with other CTR nodes. We assume counter
nodes always output different values for different indices. A
collision can only occur if there are more CTR nodes than
possible values. Since the number of values depends on A, an
adversary would have to queue exponentially long messages,
which contradicts the PPT assumption. Considering DIST =
ATU, note that CTR values are constant concerning different
keys and that ATIU guarantees uniform distribution. Thus, the

counter’s probability of colliding is < 27> for any unrelated
ATU-labeled node. The arguments are the same for the base
case and induction step.

V(i) = CONCAT: The correctness of TYPE; = L or TYPE; =
CONST is implicit. If TYPE; = AU, then at least one parent
has TYPE > AU. We assume w.l.o.g. that this is the case
for TYPE; and only consider TYPE; = AU, which is possible
due to the (partial) ordering Lemma III.1 describes. Let
e; = Eval(F,K,G,,i) be the evaluation of node 7 for
arbitrary messages and let e; and e, be analogous for the

parent nodes. Let M1 ||M;2 and Mo || Mas be two messages.

Then, the probability of a collision, which would contradict
TYPE; = AU, is
ei(My1||Miz) = e;(Maq||Maz)
< e;(Mu)|ex(Mrz) = €;(Ma1)|[ex(Ma2)
& e (M) = e;(Mar) N ep(Mi2) = ep(Maz)
= Prle;(M11|[Mi2) = ei(Ma1[| Ma2)]
< Prle; (M) = e;(Ma)] < 277,

where we utilize w.l.o.g. a fixed output length for e;. Note
that there is no collision for values of different sizes.

Again, DIST; = _L is implicit. The other case is DIST; = CR.

A collision can only occur with other CONCAT nodes due
to the length of the nodes. If there is a collision, parents j
and k& would also have a collision, which would contradict
the assumption.

V(i) = XOR: Again, let e¢; = Eval(F,K,G,-,i) be the

evaluation of node 7 for arbitrary messages and let e; and

er be analogous for the parent nodes. We have three cases:

1) Either TYPE; = CONST or TYPE; = CONST. W.Lo.g., we
assume that this applies to node j. Then TYPE; = TYPEy,
and TYPE, is either CONST, AU, PU or PRF. All of these
properties are preserved by XORing with a constant.

2) If TYPE; = PU, then TYPE; > PU A TYPE;, > PU, and
either KEYS; NKEYS;, = () or DIST; = DIST;, = AIU. We
first consider the latter case. Let M7 and M5 be different
messages as input for node ¢ with parent messages
M1, Myo for My and Msq, Moy for Moy

Prle;(M1) = y1 A ei(Mz) = ys
= Prle;(Mi1) ® ex(Mi2) = y1]
- Prie;(Ma1) @ e (Maz) = yo]
ei(Mu) =aA €¢(M21) =b
= a,be%,l}* Pr /\ej(Mlg) =ad
Nej(Mag) =b& yo
1 1 a1 1 1
abe{0,1} 223 7223 T T T2 92h T g2n
Thus, the computation of two arbitrary results, y; and
Y2, 18 pairwise independently and uniformly distributed.
We use the fact that any block labeled DIST = AIU is of
length A and the assertions that DIST = AIU imply. The
argument for KEYS; NKEYS;, = () is the same, except for
the independence of distributions at nodes j and &, which
emerges from the independent sampling of KEYS; and

KEYS; and the fact that TYPE; > PU and TYPE, > PU,
which implies, that the paths to j and k include a PRF
nodes, which are independent between both paths since
KEYS; NKEYS;, =) holds.

3) Given TYPE; = AU, we know that either TYPE; or TYPE;
is PU. W.lo.g., we assume TYPE; = PU. As XOR is
commutative e;(M) = z can be rewritten as e;(M;) =
z @ ey (Ms). Thus, a collision happens if

e;j(Mi1) @ ex(Mi2) = e;(Mar) @ er(Ma2)
ej(Mir) @ ej(Mar) = er (M) & er(Maa).

Due to the parent’s pairwise independent distributions PU,
the probability for this collision is 277

DIST; = L is always correct. If DIST; = AIU, parents j and
k are also labeled AIU. Note that an unrelated node to % is
also unrelated to j and k. Any set D in the definition of DIST
containing node 7 does not contain j or k, as F must consist
of pairwise unrelated nodes only. Thus, the uniformity and
independence of the parent nodes imply uniform distribution.
In the case that w.l.o.g. only j is labeled with AIU, we know
again that a PRF node exists on the path to j, that is key
independent to all nodes from path k, which implies the
uniform distribution.

Joint independence is achieved because if D satisfies the
mentioned pairwise independence property and contains 1,
then D satisfies the DIST = ATIU-assertion iff (F\{i})U{j, k}.
This is true due to the assumption of correctly typed parents.

V(i) = PRF;: If TYPE; = L we assign TYPE; = L, which is

always valid per definition. If TYPE; = CONST, we assign
TYPE; = CONST, which is valid, since the computation of
PRF; is deterministic. Besides the trivial cases, two cases
arise, if TYPE; > AU holds:

1) For TYPE; = PRF, we also need K; N KEYS; =
(. By Lemma IIl.1, we know that TYPE, = AU
would also be a valid labeling on j. Then we have
Eval(F,K,G,M,i) = F(K;,Eval(F,K,G,M,j)). By
applying Lemma 3.2 from Mihir Bellare [7] (see Ap-
pendix VIII), Eval(F, K, G, M, i) implements a PRF and
consequently TYPE; = PRF is correct.

2) For TYPE; = PU, we show forall = € {0,1}*,

Y € {0,1}*, and arbitrary messages
Ml,Mg that PI‘[EV&].(F,IC,G, Ml,i) = CE]
PrEval(F, K, G, My,i) = y] = 272} holds.
We have two cases for the evaluation state Zg;. Recap
that, for ¢ message queries, Z,;, is the value of node
b by Eval when queried for query a and that we
use Games and the corresponding notations for the
evaluation of Eval: 1. Zg; is uniformly and indepen-
dently sampled from {0, 1}*. 2. Otherwise —3w, (Z,,, =
Zsp NIB(G, M, i) # IB(G, PM,,,i)) holds. This means
that Eval(F, K, G, My,¢) and Eval(F,K, G, Ms,i) are
the result of two PRF, invocations on different input
values, also implying pairwise independence as well as
uniformity.

DIST is either set to L or AIU. The first case is universally
valid. For the second case, we know that Z; is chosen
uniformly and independently of all other values, or no unre-
lated PRF node is labeled AIU and provided the same input.
Thus, any other unrelated node labeled AIU is necessarily the
result of a PRF invocation on a different input, guaranteeing
independence. Uniformity is given by the fact that Z; results
from a PRF invocation. O

Gameg simplifies the actual evaluation function of Game; by
instantiating the PRF nodes with a random function (Game; to
Gamey) and handling typing errors (Games to Games). With
CondExp() in Figure 9, we formally describe the conditions
for asserting the wrong properties (i.e., a typing error). We
now show that both adaptions are negligible, by providing an
upper bound for the probability of distinguishing the games
depending on the number of nodes |V| in a graph G. Note, that
we consider PRF nodes here, and TYPE = PRF must hold
for the last node of a secure scheme. Later, in Theorem III.8,
we use these results to give an upper bound for the security
of the MACs schemes resulting from our framework.

Lemma III.4 (Correctness of game hopping). Game; and
Gameg are computationally indistinguishable for a PPT
adversary A.

Proof. Game; and Game;, differ in the setting of the bad-flag
and in replacing the PRF with a true random function. A
standard reduction shows that the advantage of an attacker in
distinguishing Game; and Gamey is bounded by the security
bound /—\dv]jﬁl; against the used PRF.

Gamey and Games are identical unless Games sets the
bad-flag and the assertions from typing fail. To calculate an
upper bound for this difference, we assume an attacker A
asking ¢ queries to Games against an arbitrary graph G. We
independently look at the probability of the bad-flag being set at
node 7 in query x, assuming it was not set before. Additionally,
we use |V| as an upper bound for the number of nodes in a
graph. The bad-flag gets set in query v at node j with parent
p if one of the following two conditions is satisfied:

Jw, TYPE, > AU

A Zwl) = ZSI) A IB(G7M1J7j) 7& IB(G7 Mwaj) (1)
Jw,DIST; = ATU
A (3r,r & rel(§),DIST, > CRA Zyr = Zyp))

Condition (1) considers errors for TYPE. It applies if at least
one previous message gives the same value at parent p. Since p
is labeled TYPE > AU, it is collision-resistant with probability
< 2. Consequently, we can bound the probability of this
case by

Pr[Condition (1)] <

Condition (2) considers errors for DIST. For a PRF node,
DIST; > CR implies DIST; = AIU. Due to the partial ordering
from Lemma III.1, we can bound the probability by considering

collisions between unrelated nodes labeled DIST = CR. An
upper bound for this probability is z - [V'| - 27*. For ¢ queries,
we then have

|V

qg—1
1
PriConditi o) <§ V. AV — <
r[on110n()]_a:0| | (a' ‘ D 2)\— 2/\

Through additive combining both bounds, we get a negligible
upper bound for the difference between the games. O

E. Variable Length MAC Construction

The framework can type graphs of arbitrary length with the
previously described and proven type inference. However, we
do not want to type every graph first; rather, we want to be
able to type an archetype to imply the typing for a similar
graph with a different message length. That means, if we type
a graph G1||G2||Gs, we want to be sure that G |G| G2||G3
and G1||G2||Gz|| - - - ||G3 have the same typing.

Since the iteration graphs are deterministic, they always map
to the same type tuple in OUTS for the same type tuple in
INS. We call the function that describes the mapping for all
possible INS to OUTS tuples a type mapping function. We
can use this to efficiently infer the typing of the combination
of iteration graphs based on the typing of those subgraphs.
Definition IIL.5 (Type mapping function). Let G = (V, P) €
(L*,(N*)*) be a subgraph of our framework. Let ¢ =
(TYPE,DIST,KEYS,LEN) be a type tuple. The type mapping
function TM: G xt — t outputs the type tuple of the OUTS or
OUTP node for a given type tuple in the INS node, according
to the typing of G using the type inference of Section III-C.

Our framework allows storing and efficiently using the lim-
ited number of mapping rules for TM to type a concatenation
of iteration graphs with desired properties. If a fixed point of
the type mapping function for an iteration graph is known,
then a secure concatenation is also possible without any further
computation:

Lemma IIL6 (Fixed points of type mapping). Let G2 be an
iteration graph and TM be a type mapping function. If 3t :
TM(G2,t) =t, then TM(Gz|| ... ||Ge,t) =t holds.

Proof. The correctness of typing follows from the determinism

of the typing procedure. Since Gs||...||G2 is an arbitrary
graph with correct typing, assertions implied by the types also
apply due to Theorem III.3. O

Now that we have a labeled computation graph with three
subgraphs G = G1||G2||G3, an automatically assignable type
system for G and a way to extend this typing to the variable-
length graph G1||G2]| ... ||G2||G3, we can finally present the
corresponding MAC construction:

Construction III.7 (MAC from subgraphs). Let M be a
message and let F: {0,1}*x {0, 1}* — {0, 1}* be the function
that implements the PRF; nodes. Let G; be an initialization
graph, let G3 be a finalization graph, and let G3,... G$
be c iteration graphs, s.t. |[M|/A = |IB(G,M,|V])|. The
computation graph is S = G1[|G3|...[|G5[|G5. Then, we
define the three IIyac algorithm as follows:

KGen: Sample all keys of keyset KC uniformly random from
{0, 1}

Mac: On input a keyset /C, a message M, compute the tag
with T'= Eval(F, K, S, M, |S.V]) and output 7.

Vrfy: On input a keyset K, a message M, and a tag 7', output
1if T = Eval(F, K, S, M,|S.V]) and otherwise 0.

Theorem II1.8. Construction II1.7 is a secure variable-length
Imac against PPTadversaries, if F is a secure PRF and S can
be typed, s.t. the typing of G1||G3]|...[|GS is t with t > AU
and for G5 is t' = PRF with INS-node(s) set to t.

Proof. We base our proof on Lemma 3.2 from Mihir Bel-
lare [7]. Essentially, it states that the correct composition of a
(computational) almost universal hash function family and a
PRF is a PRF. See Appendix VIII for a detailed description.

The computation of our scheme split into an almost universal
function G1||G3||...||G$ and a fixed-length PRF G3 is given
by Eval(F, K, Gs,Eval(F, K, M, S\{Gs}, M,|S\{G5}.V]),
|G3.V|). Note that G3 can only be typed PRF if for the last
PRF; node in G5 with index i and for indices j < ¢ we get
that KEYS; N {K;} = 0 holds.

We apply Lemma 3.2 [7] for the security bound and use the
bounds for hopping from Game; to Games and from Games
to Games for the typing properties from Lemma II1.4. Let A
be an adversary against S asking ¢ queries, using instantiations
of S with at most |V'| nodes. Then we can bound the security
of S using the bound of an adversary Ay against G3 and A/
against S\ {G3} with

PRF PRF
AdVA,S S AdV.Af,Gg

2 2 2

Note that in the case of no collision, the computation almost
universal cau-advantage is still bounded per definition by 2,
the last summand in our term. We conclude the proof by noting
that any secure PRF is a secure MAC [38], since we generally

assume canonical verification for deterministic MAC, and that
the upper security bound is negligible in \. O

F. Adapting the Finalization Subgraph

Initially, inspired by schemes like XCBCMAC, our frame-
work handles keys independently from PRF nodes. However,
it turned out that this resulted in no advantages for the
initialization and iteration graphs; it was only relevant for
the finalization graphs. Since the PRF nodes have to be keyed
anyway to handle the message blocks securely, further keys
have little advantage, and we have switched to representing
PRF and keys using a single node. To still cover constructions
that apply optimizations in the finalization graph, we present
an alternative approach that utilizes the modularity of our
framework.

Figure 4 gives an overview of the three constructions
we consider and their adaption for the finalization graph.
XCBCMAC has two additional keys and uses them depending
on the padding. Instead, TMAC has one fewer key by hashing
two different constants C'st; or Csty with an additional

XCBCMAC: K> or K3

TMAC: H(K>,Csty)
or H(K>, Csts)

Fig. 4: Overview of the security and key optimizations for
CBCMAC from XCBCMAC, TMAC, and OMAC.

key. OMAC does not need any further keys by utilizing the
encryption of a zero block Fk, (0™) and combining this with
field operations.

For all three variants, we can utilize the modularity of
our framework. Since they are based on CBCMAC and thus
have an initialization and iteration subgraph with the same
properties of strong universality as an assumption, we can
replace the finalization graph with the adaption of the respective
construction. This way, we can cover the three methods and
transfer the optimization to other initialization and iteration
subgraphs as long as they have comparable properties. As an
example, the corresponding construction for XCBCMAC is as
follows:

Construction II1.9. (XCBCMAC Framework Adaption) Let
F: {0,1}* x {0,1}* — {0,1}* be the function that imple-
ments the PRF; nodes. Let G; be an initialization graph
and let G3,...,GS be c iteration graphs, s.t. |M|/\ =
|IB(G, M,|V|)|. The computation graph is S = G;|G}]|
-+ ||GS. For a message M, a keyset K and two additional
keys K1, K2 ¢ K, the function Mac(K, M) outputs

T = F(K;,Eval(F,K, S, M, |S.V]) @ K;),

where K; € K and K; = K, if padding is necessary and
K; = K5 otherwise.

If the keys are sampled uniformly random, F is a secure
PRF, and S is typed ¢t > PU, then II1.9 is a secure MAC. The
security follows directly from the proof of XCBCMAC since
S fulfills the necessary properties [14].

IV. IMPLEMENTATION

We implemented the framework in C++14 and provide the
source code under an open source license?. This section gives an
overview of the implementation and optimization. We discuss
the results in Section V.

Implementation. We represent a MAC scheme with three
graphs: initialization, iteration, and finalization, where
each of these graphs is a list of node labels given
in order of evaluation. For example, the iteration graph

Zhttps://github.com/3Kommal415/AutomatedMACs

(a) (b

)
ST
yre
TR

Coneat)

@ CONCAT

()

(©

Fig. 5: (a) Example for Optimization 1, using graph isomor-
phism from the commutative property of XOR. (b) Example for
Optimization 2 based on transition dependencies. (c) Examples
for Optimizations 3.1, 3.2, and 3.3, pruning cryptographic
irrelevant subgraphs.

for modified PMAC (see Figure 6) is represented by
[INM, CTR, PRF(, XOR, PRF, INS, XOR, OUTS].

We prioritize the iteration graphs and generate all possible
node label combinations and then all corresponding graphs
using permutation. Consequently, our approach exhaustively
analyzes all graphs of a given size. Then, we initially vali-
date each graph, containing an input-output degree checkup,
checking if the typing of the subgraph does not abort for
input (TYPE,DIST) = (PU,AIU) (strongest type for the
initialization subgraph), and testing for a type mapping fixed
point. Afterward, given the reduced cryptographic relevance,
we only search for at least one initialization and finalization
graph so that the resulting scheme is secure. We further evaluate
whether the results are parallelizable by analyzing the iteration
graph. We consider schemes parallelizable if there is no path
from a previous computation (INS node) to a PRF.

The restrictions for the node label combinations are as
follows: Any list must start with a INM, INS, or CTR-node
and end with either OUTS or OUTP. Furthermore, the imple-
mentation supports only four differently keyed PRF, which are
hard coded. This arises from the runtime increase as the number
of nodes grows. An upper bound on the time complexity using
Landau notation is O([(n+m—4)!/((n—3)!(m—1)1)]!), where
n is the number of nodes which can get m different labels.
Here, the initial fixed nodes have already been accounted for.
We have additional optimizations to improve performance and
prevent duplicates, described below.

Optimization 1. Since XOR is commutative, switching the
input order (see Figure 5a) does not imply different results.
Thus, we compute a 64-bit hash of the subgraphs. Subsequently,
we require the hash of the left subgraph to be smaller than the

hash of the right subgraph. Due to the time-complexity, we
consider collisions on the hash values negligible. However, two
subgraphs with matching INM or CTR, nodes in their parent
subgraphs imply different outputs for the XOR node. Swapping
them alters the evaluation order. Thus, we intentionally do not
prune on these graphs.

Optimization 2. We improve the transition from a subgraph
or iteration to the next. Consider Figure 5b to get an intuition.
Although the right graph appears different at first, it simply
relocates the PRF node from the output to the input. This
similarity becomes evident with multiple subgraph iterations,
where OUTS equals INS. Given our focus on distinct iteration
subgraphs, we treat these two schemes as identical, as the
difference, if any, lies in handling the initial and final nodes.
We implemented the pruning by ensuring that the first operation
on the input state is dependent on an INM node in the current
subgraph. Regarding Figure 5, this results in pruning the
right graph, as calling PRF directly on INS lacks further
dependencies.

Optimization 3. Many subgraphs may differ significantly
but remain uninteresting from a cryptographic perspective.
Figure 5c shows the three variants we prune in our implemen-
tation: 3.1. Chains of PRF, since this does not result in any
advantage. 3.2. Computing XOR with a CTR and a subgraph
since it causes no significant impact within our framework.
3.3. Repeated appending or prepending of counter values since
security advantages are already achieved by attaching only one
counter.

Parallelizability. Besides the automatic synthesis of secure
MAC:, our framework enables an automatic search for construc-
tions with certain properties. We demonstrate this by analyzing
the results considering parallelizability. We base this approach
on the design of parallel MACs such as PMAC and LightMAC.
The idea is that the PRF invocations for the messages blocks
are the bottleneck, which should be calculated independently
so that only the results must be combined. Thus, we consider a
scheme parallelizable if the iteration graph has no path from an
INS-node to a PRF node. This can be determined efficiently
by iterating over the results of the framework.

V. EVALUATION

This section explains design decisions and compares them
with prior work. Then, we consider the overall expressiveness
of our approach and evaluate the associated experimental
results, including the description of alternative parallelizable
constructions for practical use.

A. Design Choices and Comparison

Since the idea of typed graphs inspires our framework,
comparing it with the work of Malozemoff et al. [29] and
Hoang et al. [30] is reasonable. In Table II, we compare the
type systems, which we have significantly expanded and discuss
in detail below.

A similarity between the work of Malozemoff et al. [29],
and ours is the set of node labels representing the possible

Enc. [29]

TYPE € {R,U, L}
fam C N

flags € {0,1}2

Auth. Enc. [30]
TYPE € {R,1,0, 1}
ctr € N

MACs

TYPE € {L, CONST, AU, PU, PRF }
DIST € {L,CR,AIU}

KEYS C N

LEN € N

TABLE II: Overview of the type system comparison of graph-
based approaches for the automated analysis and synthesis
considering encryption Enc., authenticated encryption Auth.
Enc., and message authentication codes MACs.

computations. The follow-up work by Hoang et al. [30] on
authenticated encryption reduces the number of node labels
and relies on tweakable block ciphers instead.

We model counter values CTR as node labels (similarly to
the extension in the Appendix of Malozemoff et al. [29]) and
extend the set of possible labels with a CONCAT label for
concatenation. Both adaptions allow the coverage of parallelize-
able counter-sum-based schemes like LightMAC [37]. However,
concatenating requires handling variable block lengths, which
we therefore do not constrain. To ensure correct constructions,
we expand the type system by LEN for the length of the blocks
and allow the PRF node to process inputs of any length.
Beyond that, we increase flexibility with the modular tripartite
graph approach and by not restricting the number of input
message blocks per iteration.

We initially considered an explicit key-labeled nodes ap-
proach. The idea arose from schemes like XCBCMAC. How-
ever, this did not result in any advantage for initialization
and iteration graphs. Generally, we need a keyed PRF-node
to process the message blocks, making further keys obsolete.
Hence, we decided to consider the PRF nodes as generally
keyed and use the modularity of our approach to cover schemas
like XCBCMAC as Section III-F describes.

Malozemoff et al. [29] uses a TYPE-field with three prop-
erties: random R, unique U, and adversarial controlled L.
Additionally, they use a family-type fam to detect related
edges and bit-vector flags to check whether an edge can be
used as input to OUTS or PRF. The type system by Hoang
et al. [30] has four properties: random R, arbitrary output L. 0
and 1 are used to reason about a node for different decryption
queries. Additionally, they use a ctr type to reason about the
independence of R.

In both cases, the prior work uses randomness. However,
MACs are commonly deterministic. Thus, a type system for
MACs needs to be enhanced with a more detailed analysis
since we cannot rely on the randomness properties in the
security analysis. Besides the implications from the MAC
security experiment Section III-B describes, this is another
reason for an advanced type system and the distinction between
TYPE and DIST. Since most MACs use multiple keys, we also
introduced the KEYS label to check for key independence.

B. Expressiveness of the Framework

This section examines the common MAC constructions (We
refer the reader to the appendix of the full version for a
comprehensive summary of MAC constructions), indicating,

Q
=

T
CONST, CR

CONST, AIU

Fig. 6: The left visualises the simplified PMAC variant. The
right shows the corresponding iteration graph, including the

typing.

on the one hand, whether and how our framework covers them
and, on the other hand, the reasons why they are not covered.

Representable Schemes. CBCMAC can be represented by the
framework and is correctly identified as insecure. The variants
ECBCMAC, FCBCMAC, and TMAC pass the typing check and
are correctly identified as secure. Since our framework utilizes
a counter and concatenation node, it also covers LightMAC.

Utilizing the modularity approach from Section III-F, our
framework also covers XCBCMAC, TMAC, and OMAC and
the associated optimizations.

NMAC is a more general description of MACs, which our
framework can represent in different ways. This also covers the
structure of HMAC. However, the framework can only prove
the security of HMAC in an idealized setup, assuming that
two independent keys are used. Nevertheless, the strength of
HMAC is that the security can be proven with only one key
and much weaker assumptions than our framework has. Our
general methodology for comprehensively generating secure
MAC:s does not allow the same level of detail inherent with
manual analysis, since the individual techniques differ greatly.

Regarding PMAC, we need to differentiate. Generally, the
framework does not include PMAC due to missing field
operations. However, those are only used for optimizations.
The following simplified version of PMAC is included: We
omit the whitening of the last block by XORing with =1 - L,
which is redundant when dealing with messages of multiple
block sizes. Additionally, we use three differently keyed PRF
instead of one. One PRF for replacing ;- L with PRF(K7, (i)),
one for the intermediate result and the message block, and the
last for the finalization block. Figure 6 shows this simplified
PMAC and its relation to our framework.

Not Representable Schemes. We deliberately exclude all
constructions within the Carter-Wegman paradigm. Simplified,
the Carter-Wegman Mac is defined as follows:

R <+s{0,1}*
T« H(K1,M) ©® F(KQ,R)

where H is a hash function, F is a PRF, K; and K> are keys,
and the output is (T, R) for input message M. The first step

@

CONCAT or XOR

PRF1

’ ’ [INM)—»{PRFI];'[XERJ

}~{xorp{concar| (nm}—~(PRF:] (xOR]

(a) (b

)

i
o) @)

© (d

Fig. 7: Shown are five generated iteration graphs: (a) are the two smallest secure but not parallelizable schemes, where the XOR
variant resembles ECBCMAC. (b) shows a slightly worse adaption of (a), where the left PRF node is not necessary. (c) shows
one of the parallelizable hybrid schemes. (d) presents a parallelizable hybrid with combiner properties for the first XOR node.

Nodes 1 PRF 2 PRF 3 PRF

S P S P S P
5 2 0 0 0 0 0
6 1 0 2 0 0 0
7 11 1 0 0 0 0
8 37 3 76 8 0 0
9 85 4 186 10 192 12
10 350 22 806 50 312 0
11 1066 63 4940 394 | 5118 480
12 3245 148 / / / /

TABLE III: Summary data from framework computation,
including the number of secure schemes (S) and the size of
the parallelizable subset (P) considering iteration graphs with
one, two or three differently keyed PRF.

involves sampling a random value R, resulting in a randomized
construction. Since R is derived from a PRF, true randomness is
not required. It is sufficient that R is unique, serving as a nonce
(a number only used once). However, choosing R as a counter
would result in a stateful Mac algorithm. Both cases fall outside
the scope of our framework. Nonetheless, the framework’s
modularity allows construction to address this, similar to the
approach Section III-F describes. While these constructions
offer interesting insights into various cryptographic topics,
they extend beyond the focus of this work. Consequently, our
framework does not cover schemes like XORMAC, VMAC,
and UMAC.

The framework does not cover more schemes whose design
and proof technique strongly differ from those previously
mentioned. This concerns SpongeMAC based on sponge
functions and includes one-time MAC constructions. Notably,
Poly1305 is excluded as its universal hash function does not
satisfy the necessary properties for the PRF node. Existing
approaches for Poly1305 are either one-time or Carter-Wegman-
based, and adapting the framework to include these, as already
described above, falls outside the scope of this paper.

C. Results from Implementation

We now present the computational results of our imple-
mentation, which Section IV describes. Table III shows the
results with different constraints. We only consider the iteration

graphs since the set of optimal iteration and finalization graphs
is limited and well-studied.

For each discovered secure MAC scheme, our implementa-
tion outputs additional information for each iteration graph:
the number of PRF nodes, the total sum of bits given to a
PRF, and the ratio of input bits (number of INM-nodes times
bits per block) to PRF input bits. Combined with the number
of computational nodes, we base our theoretical performance
approximation on this information.

All common constructions in the scope of the framework’s
expressiveness can be represented with at most 12 nodes. For
instance, Figure 7a resembles the ECBCMAC construction.
This also includes the modified PMAC scheme displayed in
Figure 6.

Considering simple constructions without additional prop-
erties besides security, we found no new schemes with
comparable efficiency. Figure 7b shows the reason using an
example: The size of the graph instances for these methods is
sufficiently small that all efficient constructions have already
been found, and further nodes reduce efficiency.

However, the strength of our methodology emerges when
considering MACs with properties beyond security. Our frame-
work allows for hybrid iteration graphs, i.e., a subgraph that
handles multiple message blocks. In particular, the parallel
hybrid schemes appear useful. In terms of the number of
nodes and the message block per PRF ratio, many of these
schemes are theoretically comparable in efficiency to existing
parallel schemes. Among the many hybrid schemes generated,
those composed of common patterns seem intuitive and
straightforward. Figure 7c shows an example of such a scheme
with 10 nodes for the iteration graph. Basically, this is a
combination of CBCMAC and LightMAC, in which each
iteration graph processes a larger number of message blocks.
Note that this subset of hybrid schemes emerges directly as a
result from our implementation, but also from the type mapping
function of Definition III.5. The same schemes can be obtained
by concatenating the subgraphs of CBCMAC and LightMAC
using the fixed points of their type mapping functions.

In theory, the efficiency of such hybrid variants is slightly
better than that of LightMAC since operations like CTR and

CONCAT are minimized. Admittedly, this is not a major
factor, but it is significant when scaling up to large data sets.

‘ T ..] ’ I—'f.‘i
40| |mLightMaC | ® = "
Hybrid 1 e o /
T
[] [
[.. J .
N - M [Y ".5*
g 100 |- . .-.l'J N
= g T [.-"?
m ol Nl
P
80 |- = x4 -
L
F" '.‘.i C
60 \'h | | | i
0 1 2 3
Length 104
I A T X T
140 | AHybrld 2 . A L N
PMAC N &
A ‘ L) A
o . Ce e Gl
A =
© 4 A B AtA‘AA A‘A
g A A 4 A aah 4
= 100 AA AA‘ ..Aﬁ“~: |
N ﬁA"A A aA
A a2 AL A
T At]
AL A a
» ‘3‘“ i%
60 [#aTa s |
\ | | |
0 1 2 3
Length 104

Fig. 8: Results of the performance comparison between our
parallelizable hybrid schemes and comparable implementations
of LightMAC and PMAC. An Apple M2 chip and 16GB of
RAM were used for our computational tests. We measured the
computation time in microseconds for messages with up to
4096 blocks, each of 64 bits in size.

We implemented two of the parallelizable hybrid schemes.
Hybrid 1 implements Figure 7c, and Hybrid 2 is a variant,
where the CBCMAC part digests four instead of 2 message
blocks. Additionally, we implemented comparable implementa-
tions for the common existing MAC schemes LightMAC [37]
and PMAC [18]. For PMAC we use the variant output by our
framework described in Figure 6. Note that in practice, existing
implementations of CBCMAC variants, LightMAC, and PMAC
can be combined to simplify implementation complexity.

The administrative part for managing the threads is the same
for all four implementations. Since creating threads reduces
efficiency, we do not have a thread for every iteration graph

but divide the load evenly between a fixed number of threads.

The standard comparison approach is comparing the clock
cycles per iteration graph. However, since the size of the
iteration graphs varies and larger graphs implicitly require more
clock cycles, we use a method based on the time measurement.
We randomly test for messages with up to 4096 message blocks
with 64-bit block sizes. We instantiate the PRF using AES
encryption from OpenSSL [39]. Figure 8 shows the result.

The results highlight that the hybrid parallel schemes
generated by our framework have comparable efficiency to
existing methods. In some cases, especially with growing
message length, our schemes are slightly more efficient
due to the correlation to the amount of data per iteration
block. However, this relationship may not generally apply,
as hardware restrictions and optimization significantly affect
parallel computation. Therefore, we do not consider the hybrid
parallel schemes of our framework as a replacement for
LightMAC or PMAC, but rather as alternatives or extensions
for better efficiency optimization.

Our framework allows graphs with arbitrary size and any
number of keys. Intuitively, this leads to redundancy in most
graphs, which impairs efficiency. Nevertheless, redundancy
can be practically relevant: A cryptographic Combiner [40],
[41] combines two functions into a failure-tolerant function
such that the combination remains secure as long as one of
the two functions is secure. Considering a PRF F, the com-
mon construction for a Combiner is Comb((K1, Ks), M) =
F(K1, M)®F (K2, M) with independent and uniformly random
keys K; and Ks. Combiners provide robustness for standards
such as TLS [42]. Especially the results with three or more
differently keyed PRFs could be interesting for future research
in this area. Figure 7d shows a parallelizable hybrid scheme
with 12 nodes. Since we have few constraints, INM nodes can
represent the same message block. The nodes outlined in red
represent the combiner.

VI. ACKNOWLEDGMENTS

We gratefully acknowledge the anonymous reviewers for
their invaluable comments and suggestions. This work was
partially supported by Deutsche Forschungsgemeinschaft as
part of the Research and Training Group 2475 “Cybercrime and
Forensic Computing” (grant number 393541319/GRK2475/1-
2019), grant 442893093, by the state of Bavaria at the Nurem-
berg Campus of Technology (NCT) which is a research coop-
eration between the Friedrich-Alexander- Universitit Erlangen-
Niirnberg (FAU) and the Technische Hochschule Niirnberg
Georg Simon Ohm (THN), and by the Smart Networks and
Services Joint Undertaking (SNS JU) under the European
Union’s Horizon Europe research and innovation program in
the scope of the CONFIDENTIAL6G project under Grant
Agreement 101096435. The contents of this publication are
the sole responsibility of the authors and do not in any way
reflect the views of the EU.

[1]

[2

—

[3

=

[4]

[5

=

[6]
[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” in
International Conference on the Theory and Application of Cryptology
and Information Security. ~Springer, 2000, pp. 531-545.

T. Dierks and C. Allen, RFC 2246 - The TLS Protocol Version 1.0,
Internet Activities Board, Jan. 1999.

S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
Request for Comments: 4301, RFC Editor, RFC 4301, December 2005.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc4301.txt

T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture,” Request for Comments: 4251, RFC Editor, RFC 4251,
January 2006. [Online]. Available: https://www.rfc-editor.org/rfc/rfc4251.
txt

E. Petrank and C. Rackoff, “Cbc mac for real-time data sources,” Journal
of Cryptology, vol. 13, no. 3, pp. 315-338, 2000.

M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in Crypto, vol. 96. Springer, 1996, pp. 1-15.
M. Bellare, “New proofs for nmac and hmac: Security without collision-
resistance,” in Annual International Cryptology Conference. Springer,
2006, pp. 602-619.

J. M. Turner, “The keyed-hash message authentication code (hmac),
Federal Information Processing Standards Publication, vol. 198, no. 1,
pp. 1-13, 2008.

B. Guido, D. Joan, P. Michaél, and V. Gilles, “Cryptographic sponge
functions,” 2011.

M. Dworkin, “Recommendation for block cipher modes of operation,
NIST special publication, vol. 800, p. 38G, 2016.

J. Kelsey, S.-j. Chang, and R. Perlner, “Sha-3 derived functions: cshake,
kmac, tuplehash, and parallelhash,” NIST special publication, vol. 800,
p- 185, 2016.

B. Preneel and P. C. Van Oorschot, “Mdx-mac and building fast macs
from hash functions,” in Annual International Cryptology Conference.
Springer, 1995, pp. 1-14.

M. Bellare, K. Pietrzak, and P. Rogaway, “Improved security analyses
for cbc macs,” in Crypto, vol. 3621. Springer, 2005, pp. 527-545.

J. Black and P. Rogaway, “Cbc macs for arbitrary-length messages: The
three-key constructions,” in Advances in Cryptology—CRYPTO 2000.
Springer, 2000, pp. 197-215.

K. Kurosawa and T. Iwata, “Tmac: Two-key cbc mac,” in Topics in
Cryptology—CT-RSA 2003: The Cryptographers’ Track at the RSA Con-
ference 2003 San Francisco, CA, USA, April 13-17, 2003 Proceedings.
Springer, 2003, pp. 33-49.

T. Iwata and K. Kurosawa, “Omac: One-key cbc mac,” in FSE, vol. 2887.
Springer, 2003, pp. 129-153.

V. T. Hoang, J. Katz, and A. J. Malozemoff, “Automated analysis and
synthesis of authenticated encryption schemes,” in ACM CCS 2015,
I. Ray, N. Li, and C. Kruegel, Eds. ACM Press, Oct. 2015, pp. 84-95.
P. Rogaway and J. Black, “Pmac: A parallelizable message authentication
code,” Preliminary Draft, October, vol. 16, 2000.

G. Barthe, J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech, B. Schmidt,
and S. Zanella Béguelin, “Fully automated analysis of padding-based
encryption in the computational model,” in ACM CCS 2013, A.-R.
Sadeghi, V. D. Gligor, and M. Yung, Eds. ACM Press, Nov. 2013, pp.
1247-1260.

A. Tiwari, A. Gascon, and B. Dutertre, “Program synthesis using dual
interpretation,” in International Conference on Automated Deduction.
Springer, 2015, pp. 482-497.

G. Barthe, E. Fagerholm, D. Fiore, J. C. Mitchell, A. Scedrov, and
B. Schmidt, “Automated analysis of cryptographic assumptions in generic
group models,” in CRYPTO 2014, Part I, ser. LNCS, J. A. Garay and
R. Gennaro, Eds., vol. 8616. Springer, Heidelberg, Aug. 2014, pp.
95-112.

G. Barthe, E. Fagerholm, D. Fiore, A. Scedrov, B. Schmidt, and
M. Tibouchi, “Strongly-optimal structure preserving signatures from
type II pairings: Synthesis and lower bounds,” in PKC 2015, ser. LNCS,
J. Katz, Ed., vol. 9020. Springer, Heidelberg, Mar. / Apr. 2015, pp.
355-376.

J. A. Akinyele, M. Green, S. Hohenberger, and M. W. Pagano, “Machine-
generated algorithms, proofs and software for the batch verification of
digital signature schemes,” in ACM CCS 2012, T. Yu, G. Danezis, and
V. D. Gligor, Eds. ACM Press, Oct. 2012, pp. 474-487.

»

>

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

M. Gagné, P. Lafourcade, and Y. Lakhnech, “Automated security proofs
for message authentication codes,” Tech. Rep.

B. Carmer and M. Rosulek, “Linicrypt: A model for practical cryptogra-
phy,” in CRYPTO 2016, Part 111, ser. LNCS, M. Robshaw and J. Katz,
Eds., vol. 9816. Springer, Heidelberg, Aug. 2016, pp. 416-445.

I. McQuoid, T. Swope, and M. Rosulek, “Characterizing collision and
second-preimage resistance in linicrypt,” in TCC 2019, Part I, ser. LNCS,
D. Hotheinz and A. Rosen, Eds., vol. 11891. Springer, Heidelberg,
Dec. 2019, pp. 451-470.

Z. Javar and B. M. Kapron, “Preimage awareness in linicrypt,” in CSF
2023 Computer Security Foundations Symposium. 1EEE Computer
Society Press, Jul. 2023, pp. 33-42.

T. Hollenberg, M. Rosulek, and L. Roy, “A complete characterization
of security for linicrypt block cipher modes,” in CSF 2022 Computer
Security Foundations Symposium. 1EEE Computer Society Press, Aug.
2022, pp. 439-454.

A. J. Malozemoff, J. Katz, and M. D. Green, “Automated analysis and
synthesis of block-cipher modes of operation,” in Computer Security
Foundations Symposium (CSF), 2014 IEEE 27th. 1EEE, 2014, pp.
140-152.

V. T. Hoang, J. Katz, and A. J. Malozemoff, “Automated analysis and
synthesis of authenticated encryption schemes,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 84-95.

M. Bellare and P. Rogaway, “The security of triple encryption and a
framework for code-based game-playing proofs,” in EUROCRYPT 2006,
ser. LNCS, S. Vaudenay, Ed., vol. 4004. Springer, Heidelberg, May / Jun.
2006, pp. 409-426.

J. Katz and Y. Lindell, Introduction to modern cryptography.
press, 2014.

M. Bellare and P. Rogaway, “The security of triple encryption and
a framework for code-based game-playing proofs,” in Proceedings
of the 24th Annual International Conference on The Theory and
Applications of Cryptographic Techniques, ser. EUROCRYPT 06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 409-426. [Online].
Available: http://dx.doi.org/10.1007/11761679_25

J. L. Carter and M. N. Wegman, “Universal classes of hash functions,’
Journal of computer and system sciences, vol. 18, no. 2, pp. 143-154,
1979.

M. N. Wegman and J. L. Carter, “New hash functions and their use in
authentication and set equality,” Journal of computer and system sciences,
vol. 22, no. 3, pp. 265-279, 1981.

D. R. Stinson, “Universal hashing and authentication codes,” in Annual
International Cryptology Conference. Springer, 1991, pp. 74-85.

A. Luykx, B. Preneel, E. Tischhauser, and K. Yasuda, “A mac mode for
lightweight block ciphers,” in International Conference on Fast Software
Encryption. Springer, 2016, pp. 43-59.

M. Bellare, O. Goldreich, and A. Mityagin, “The power of verification
queries in message authentication and authenticated encryption,” Cryptol-
ogy ePrint Archive, Report 2004/309, 2004, https://eprint.iacr.org/2004/
309.

OpenSSL Project, “OpenSSL Documentation: The OpenSSL crypto
library,” https://www.openssl.org/docs/, 2024.

M. Nandi and D. R. Stinson, “Multicollision attacks on some
generalized sequential hash functions,” Cryptology ePrint Archive, Paper
2006/055, 2006, https://eprint.iacr.org/2006/055. [Online]. Available:
https://eprint.iacr.org/2006/055

M. Fischlin and A. Lehmann, “Security-amplifying combiners for
collision-resistant hash functions,” in Annual International Cryptology
Conference. Springer, 2007, pp. 224-243.

M. Fischlin, A. Lehmann, and D. Wagner, “Hash function combiners in
tls and ssl,” in Cryptographers’ Track at the RSA Conference. Springer,
2010, pp. 268-283.

CRC

)

VII. TECHNICAL DETAILS OF THE TYPE INFERENCE

We use a type inference procedure to automatically assign
the types of the type system to the nodes of a labeled graph.
This typing algorithm analyzes all nodes and computes their
type depending on the types assigned to their predecessors if
any exist. We assume the nodes are visited in some topological
ordering and that the types of the predecessors have already

https://www.rfc-editor.org/rfc/rfc4301.txt
https://www.rfc-editor.org/rfc/rfc4251.txt
https://www.rfc-editor.org/rfc/rfc4251.txt
http://dx.doi.org/10.1007/11761679_25
https://eprint.iacr.org/2004/309
https://eprint.iacr.org/2004/309
https://www.openssl.org/docs/
https://eprint.iacr.org/2006/055
https://eprint.iacr.org/2006/055

Gamey(V, P, \) Gamey(V, P, \) Games(V, P, \) Pre()
for kel,...,|K|: for kel,...,|K|: for kel,...,|K|: 1: if V[j] = INM:
K}, <40, I}A fr s maps({0,1}*,{0,1}*) fx < maps({0,1}*, {0, 1})\) 2: if j ¢ pred(i) : Zs; = 0*
s=1 s=1 s=1 3: else :
. 4: Zsj = Mlincnt)
On query (M, 1) On query (M, 1) On query (M,14) . iment — inent 4 1
1: dnent =1 1: dnent=1 1: dnent =1 6: elseif V[j]=CTR:
2: ent=1 2: ent=1 2: ent=1 7: if 3z > j,V[z] = OUTS:
3: state =0 3: state = 0* 3. state = 0 8 Zsj = {cnt)x
4 4: PMs=M 4: PMy=M 9: else :
5: forje{l,...,|V|}: 5: forje{l,...,|V]}: 5: forje{l,...,|V|}: 10 Zgj = (2% —ent — 1)
6: Pre() 6: Pre() 6: Pre() 11: ent =cnt + 1
7: elseif V[j] = PRF; : 7: elseif V[j] = PRF; : 7: elseif V[j] = PRF; : 12: elseif V[j] = XOR:
8: (p) = P[j] 8: (p) = P[j] 8: (p) = P[j] 13: (p,q) = Plj];Zsj = Zsp D Zsq
9: 9: if (CondExp()) : 9: if (CondExp()) :
10 : 10 : bad = true 10 : bad = true Post()
. e 1 Zo5 8 {0,1}* 1+ elseif V[j] = CONCAT :
: o 2: else 20 () = PliliZe; = ZeplZeq
13: Zsj = F(K,Zsq) 13: Zs; = fi(Zp) 13 : Zs; = fi(Zp) 31 elseif V[j] = OUTP :
14: Post() 14 : Post() 14 Post() . (p) = PUliZe; = Zup
Bros=stl Bros=stl 150 s=s+1 5: elseif V[j] = OUTS :
16: return Z(,_iy; 16: return Z:;_); 16: return Z(,_1); 6 (p) = Pljli Zoj = Zop; state = s,
CondExp() 7: if =3z > j,V[z] = OUTS :
1: return (H’LU, (TYPEP > AUA Zuyp = Zsp N\ (]:B((V7 }D)7 M,]) #* IB((‘/7 P)7P]V[w7j))) z elseicfni/z_]li .
2: \ (DIST]' >CRAJv,v ¢ 7'€l(j),DISTU >CRAZyy = Zsp)) 10 2., — state

Fig. 9: Pseudocode of Game;, Games and Games, which are used for the proof of correct typing and security of the resulting
MAC scheme. For the outsourcing of redundant code, we assume that Pre(), Post(), and CondExp() are within the scope in

which they are called and can access all variables within it.

been determined. In the following, we use ¢ to denote any node

in any graph and j and k to denote its parents if they exist:

V(i) = INM: We set TYPE; = AU,DIST; = L,KEYS; = 0,
and LEN; = \.

V(i) = CTR: We set TYPE; = CONST,DIST; = CR,KEYS; =
0, and LEN; = \.

V(i) = CONCAT: We set TYPE; = L if TYPE; = TYPE, =

L or TYPE; = L ATYPE;, = CONST or TYPE; = LATYPE; =
CONST. If TYPE; = TYPE; = CONST we set TYPE; = CONST.
Otherwise, TYPE; = AU.
We set DIST; = L if DIST; = DIST, = L, otherwise
DIST; = CR. The following tables provide an overview for
assigning TYPE; and DIST; based on parent nodes j (row)
and k (column):

TYPE ‘ 1 CONST AU PU PRF
L 1 1 AU AU AU DIST | L CR AIU
CONST | L CONST AU AU AU L [L cr cr
AU | AU AU AU AU AU CR |CR CR CR
PU AU AU AU AU AU AIU | CR CR CR
PRF AU AU AU AU AU

Moreover, KEYS; = KEYS; UKEYS,, and LEN; = LEN; 4-LENy,.
V(i) = XOR: We use Comb(t;,ts), which is shown in Fig-
ure 10, to compute the type of node ¢ depending on the type
t; of node j and ?j of node k. If Comb outputs L, we abort
further labeling.
V(i) = PRF;: If TYPE; = | we set TYPE; = L. If TYPE; =
CONST we set TYPE; = CONST. If TYPE; > AU we set

TYPE, = PRF if {K;} NKEYS; = () and TYPE; = PU
otherwise.

Regarding DIST;, we set DIST; = AIU if DIST; # L and
DIST; = L otherwise. Finally, we set KEYS; = { K;}UKEYS,
and LEN; = .

V(i) = OUTS: We assign node i the same type tuple as parent
node j. If 3r, V(r) = INS A LEN, # LEN;, we abort further
labeling, as we require the iteration function not to modify
the length of the state carried over to the next iteration.

V(i) = INS: We set the same typing as the OUTS node from
the previous subgraph. Together with OUTS, this enables
the concentration of subgraphs.

V(i) = OUTP: If TYPE; = PRF we accept the labeling.
Otherwise, we abort further labeling if necessary.

If the type inference of a subgraph ends with an abort, we
assume no typing that would lead to a secure variable-length
MAC scheme can be assigned to the graph.

VIII. THE PRF(CAU) = PRF LEMMA

The proof and the security bound for the results of our
framework use Lemma 3 of the NMAC and HMAC paper from
Mihir Bellare [7, Lemma 3.2]. We now restate the Lemma for
convenience.

The composition of families h: {0,1}* x {0,1}¢ —
{0,1}¢ and F: {0,1}* x D — {0,1}* is the family
hF:{0,1}t*x D — {0,1}¢ defined by hF (Kouw|| Kin, M) =

Comb(t;, tx)

: [/ Let t; = (TYPE;, DIST;,KEYS,, LEN;) be the result’s type tuple

1:

2: if (LEN; # LEN) : return L

3: if (TYPE; = CONST) : TYPE; = TYPE;

4: if (TYPE; = CONST) : TYPE; = TYPE;

5: if ((DIST; = AIU ADISTx = AIU) V (KEYS; NKEYS;, = 0)) :
6: if ((TYPE; = (PUV PRF) A TYPE; = (PUV PRF)) :

7: TYPE; = PU

8 : elseif (TYPE; = (PUV PRF) V TYPE, = (PUV PRF)) :

9: TYPE; = AU

10 else : TYPE; = L

11: else : TYPE; = 1

12: if (DISTj = ATIU ADISTy = AIU) : DIST; = AIU

13: elseif ((DIST]- = ATU V DISTy, = AIU) A (KEYSj N KEYS, = @)) :
14 : DIST; = AIU

15: else :return L

16 : KEYS; = KEYS; UKEYSg

17: LEN; = LEN,

18: return ¢;

Fig. 10: Pseudocode for the type inference of an XOR node
based on parent node’s types.

h(Kou, F(Kin, M)). The following lemma says that if 4 is a
PRF (pseudorandom function) and F' is cAU (computational
almost universal) then AF is a PRF [7].

Lemma VIIL1. (PRF (cAU) = PRF) [7] Let B = {0,1}".
Let h: {0,1}¢ x B — {0,1}° and F: {0,1}¥ x D — B be
families of functions, and let hF: {0,1}*** x D — {0,1}¢
be defined by

hF(Kout”Kin;M) = h(KoutaF(KinaM))

for all Ky, € {0,1}¢,K;, € {0,1}¥ and M € D. Let
App be a PRF-adversary against hF' that makes at most
q > 2 oracle queries, each of length at most n, and has time
complexity at most t. Then there exists a PRF-adversary Ay,
against h and an au-adversary Ap against F such that

AV (Apr) < AdVERE(Ap) + <;1) AdVEE (AR,

	Introduction
	Related Work

	Preliminaries
	The MAC Framework
	A Graph-Based Representation of MACs
	The Type System
	Type Inference on Graphs
	Proof of Correct Typing
	Variable Length MAC Construction
	Adapting the Finalization Subgraph

	Implementation
	Evaluation
	Design Choices and Comparison
	Expressiveness of the Framework
	Results from Implementation

	Acknowledgments
	References
	Technical Details of the Type Inference
	The Prf(cAU) = Prf Lemma

