A Fully-Adaptive Threshold
Partially-Oblivious PRF

Ruben Baecker'®, Paul Gerhart?®, Daniel Rausch®®, and Dominique Schréder®*

! Friedrich-Alexander-Universitit Erlangen-Niirnberg, Erlangen, Germany
ruben.baecker@fau.de
2 TU Wien, Vienna, Austria
{paul.gerhart, dominique.schroeder}@tuwien.ac.at
3 University of Stuttgart, Stuttgart, Germany
daniel.rausch@sec.uni-stuttgart.de

Abstract. Oblivious Pseudorandom Functions (OPRFs) are fundamen-
tal cryptographic primitives essential for privacy-enhancing technologies
such as private set intersection, oblivious keyword search, and password-
based authentication protocols. We present the first fully adaptive, par-
tially oblivious threshold pseudorandom function that supports proactive
key refresh and provides composable security under the One-More Gap
Diffie-Hellman assumption in the random oracle model.

Our construction is secure with respect to a new ideal functionality for
OPRFs that addresses three critical shortcomings of previous models—
specifically, key refresh and non-verifiability issues that rendered them
unrealizable. In addition, we identify a gap in a prior work’s proof of
partial obliviousness and develop a novel proof technique to salvage their
scheme.

Keywords: Partially-Oblivious PRF - Threshold Cryptography - Adaptive
Security - Universal Composability.

1 Introduction

An Oblivious Pseudorandom Function (OPRF) can be thought of as a secure
two-party computation of a pseudorandom function. In this setup, one party, P;,
holds the private key k of the pseudorandom function, while the second party,
P, holds the input x. At the end of the protocol, P, learns the output of the
function f(k,x), but nothing else about k. P; remains oblivious to x and f(k, z).

OPRFs are well-studied and continue to attract attention due to their critical
role in privacy-enhancing technologies. They are integral to primitives such as
private set intersection, oblivious keyword search, private information retrieval,
and password-based authentication protocols, including Password-Authenticated
Secret Sharing, Password-Authenticated Key Exchange, and Single Sign-On
systems. In addition to its theoretical significance, OPRFs play a crucial role
in practical protocols. A notable example is the Password-Authenticated Key
Exchange (PAKE) protocol, OPAQUE [20], which is currently in the process of

https://orcid.org/0009-0008-9310-8964
https://orcid.org/0000-0002-0164-0187
https://orcid.org/0000-0002-1901-3659
https://orcid.org/0000-0001-6943-8914

2 Authors Suppressed Due to Excessive Length

being standardized [3]. It has the potential to become the standard for password-
based authentication on the internet, replacing the current standard, password-
over-TLS. Currently, it is already deployed to billions of people on WhatsApp in
their end-to-end encrypted backup protocol [31, 12].

1.1 Primitives—Generalizing Oblivious PRFs

Extensive research in the area of OPRFs has led to the development of new
variants of OPRFs and protocols [19, 21, 22, 20, 17, 2, 10], enabling diverse
applications and achieving novel security properties:

Partially OPRFs. A partially oblivious PRF (pOPRF) [14] allows for the dis-
closure of a portion of the input while still maintaining the confidentiality of
the remaining input. pPOPRFs provide more granular control over how informa-
tion is shared, supporting new applications while maintaining strong security
guarantees. A key example is password-based authentication protocols [14, 2],
which utilize partial input leakage to track login attempts per user by disclosing
the username while still safeguarding the user’s password [2].

Threshold OPRFs. A t-out-of-n Threshold Oblivious Pseudorandom Function
(tOPRF) is a multi-server variant where the key is distributed among n servers.
At least t servers must cooperate to compute the PRF. The scheme remains
secure as long as no more than ¢ — 1 servers are compromised. Consequently,
no single server can compute the PRF independently. A Distributed Oblivious
Pseudorandom Function (dOPRF) is a special case of tOPRF where t = n,
meaning that all n servers are required to compute the PRF together.

OPRFs with Proactive Key Refresh. Some of the latest protocols incorpo-
rate more robust security measures that are designed to maintain security even
in the event of a server corruption. The basic concept behind this approach
is “proactive key refresh”, which involves replacing old keys with new ones to
prevent them from being exploited by malicious actors. After a key refresh,
a corrupted server is considered honest again. Supporting key refresh is best
practice in industries [16, 26, 30] and also required by certain standards, such
as PCI DSS [28], and a NIST special publication [1].

1.2 Constructions—The 2HashDH OPRF family

Jarecki et al. introduced the 2HashDH family of OPRFs in a series of influential
papers (AC’14, EuroS&P’16, ACNS’17, EC’18, AC’24). The constructions are
secure within the Universal Composability (UC) framework in the Random
Oracle Model (ROM), based on the one-more gap Diffie-Hellman (OM-gapDH)
assumption [19, 21, 22, 20, 17]. 2HashDH and its variants serve as essential
components in various cryptographic protocols, e.g., [21, 22, 20, 11, 2, 10, 17].
Baum et al. (EuroS&P’20) extended the research on OPRFs by proposing a
distributed pOPRF based on 2HashDH, which is secure against fully-adaptive
corruptions [2].

A Fully-Adaptive Threshold Partially-Oblivious PRF 3

While distributed and threshold PRFs share some similarities, they highlighted
the difficulty of developing a threshold version of their design, identifying it as a
significant open problem. This challenge was further emphasized by Casacuberta
et al. (EuroS&P’22), who recognized threshold pOPRFs secure against fully-
adaptive corruptions as a crucial missing component in the landscape of 2HashDH-
based constructions [9]. This remains one of the key unresolved issues in the
field.

Beyond its theoretical importance, a fully adaptive threshold pOPRF would
provide an important basis for adapting existing protocols to a fully-adaptive
threshold setting while supporting proactive key refresh. Two prime examples are
OPAQUE and PESTO. OPAQUE is a Password-Authenticated Key Exchange
protocol [20] that is currently getting standardized [3] and that is deployed to
billions of people in the WhatsApp end-to-end encrypted backup protocol [31, 12].
Gu et al. already extended OPAQUE to the threshold setting [17] but left fully-
adaptive security in combination with proactive key refresh as an open problem.
PESTO is a distributed single sign-on scheme [2] that requires the participation
of all servers for successful execution, meaning that the unavailability of a single
server brings the entire system to a halt. Adapting PESTO to a thresholding
variant would greatly improve its robustness and usability, allowing the system
to continue functioning even if some servers are offline.

1.3 Owur Contributions

Our contribution is threefold (Table 1 provides an overview of which papers are
affected by our findings):

Construction: Our primary contribution is the development of the first fully
adaptive, partially-obvious threshold pseudorandom function. This construction
supports proactive key refresh and is provably secure in a Universal Compos-
ability (UC) model [8, 7, 25, 24, 6, 18] under the One-More Gap Diffie-Hellman
(OM-B-gapDH) assumption in the ROM.

Foundations: We introduce a new formalization of a UC ideal functionality for
oblivious pseudorandom functions (OPRFs), identifying three shortcomings
in previous UC ideal functionalities [22, 2]. While one of these problems has
been recently and independently discovered [17], the other two have yet to be
addressed. These two gaps concern the modeling of key refresh and the fact that
the OPRF is not verifiable. The first gap, concerning key refresh, is particularly
significant since the current formalization is not realizable. In response, we
present the first realizable formalization of an OPRF that supports proactive
key refresh.

Technical insights: From a technical point of view, we identify a gap in the
proof of partial obliviousness in the constructions of Baum et al. [2] and Gu
et al. [17]. The authors claim that a certain event occurs with negligible proba-
bility since its occurrence would otherwise violate the OM-gapDH assumption.
However, we show how this event can be triggered without giving the simulator
any advantage in breaking the assumption. We explore several approaches to

4 Authors Suppressed Due to Excessive Length

salvaging their construction. Adding a general-purpose non-interactive zero-
knowledge proof would solve the problem but at the cost of reduced efficiency.
Alternatively, a proof in the Algebraic Group Model (AGM) [15] could solve
the problem, but this introduces a stronger trust assumption, along with re-
cent concerns about the soundness of the model [32]. Instead, we introduce
a novel proof technique-Domain-Isolating Oracle Programming (DIOP)-that
preserves the original construction while establishing its security. DIOP may
be of independent interest.

1.4 Related Work

A graphical comparison to related work is shown in Table 1. Oblivious Pseudo-
random Functions (OPRFs) have been studied extensively, also in the context of
universal composability. Jarecki et al. [19] introduced a verifiable OPRF, but did
not achieve partial obliviousness or threshold functionality. Subsequent work by
Jarecki et al. [21, 22] continued this line of research; however, [22] contains a gap
in the model regarding threshold functionality. Baum et al. [2] claimed a partially
oblivious OPRF, but their proof contains a gap regarding partial obliviousness,
and their model suffers from labeling and key refresh problems, rendering their
ideal functionality unrealizable. Das et al. [10] presented a distributed (¢t = n),
partially oblivious OPRF, but lacked full adaptivity and threshold capabilities.
Gu et al. [17] provided a thresholding OPRF with partial obliviousness and full
adaptivity, but suffers from the same proof gap as [2] and has no support for
proactive key refresh.

Comparison to other Blinding Techniques Looking forward, we use a blinding
technique to achieve fully-adaptiveness while supporting proactive key refreshes.
Camenisch et al. also used pairwise blinding values to make an evaluation look
independent from key shares [5]. The crucial distinction between our technique
and their approach is that in their scheme, the response of every server is necessary
for the blinding values to cancel each other out. Therefore, it is only applicable
to the distributed (¢t = n) but not to the threshold setting. Baum et al. reused
the approach of Camenisch et al. in [2].

Gu et al. use blinding values that cancel each other out to avoid mixing
of server responses of different protocol sessions [17]. They use Shamir’s secret
sharing of zero in the exponent, resulting in the neutral element when combined.
Even though their solution works in the threshold setting, it does not suffice
for realizing security under fully-adaptive corruption with proactive key refresh.
This is because the uniformly random responses cannot be made consistent with
a leaked secret key in hindsight.

In independent and concurrent work, Katsumata et al. [23] discovered that the
blinding technique introduced in [27]-which is essentially the same as ours—can
be used to realize fully-adaptive threshold signatures.

A Fully-Adaptive Threshold Partially-Oblivious PRF 5

Table 1: Comparison of 2HashDH constructions that are proven secure within
the UC framework. o denotes that a paper claims this property but has a gap
regarding the property, and e denotes that a paper claims and achieves the

property.

O 0\
S %\q’\\«\Qﬁ@\\@Q\\@\ > \\e
P EFS S S

Partially oblivious o|e|o| e
& Verifiable o s
% Threshold o o | o
§ Distributed (¢ = n) o | o
A Proactive key refresh o
Fully-adaptive o °
Proof gap: partial obliviousness X X
é Model gap: labels X
U Model gap: threshold X
Model gap: key refresh X

1.5 Road Map and Notation

In Section 2, we provide a technical overview, guiding through the main concepts
and contributions of the paper. In Section 3, we provide the necessary background
for understanding our work. Section 4 describes the ideal functionality FipopPRF -
In Section 5, we describe our construction in detail. The main concepts of our
proof are explained in Section 6, while the full definition of the simulator and
the complete proof are deferred to the full version of the paper.

Notations. Let A € N be the security parameter and let € be any negligible
function of A. We denote the set {1,...,n} by [n]. Let r +$ S denote a uniformly
random sample of an element r from a set S. Let G be an additive cyclic group
of prime order ¢ with generator 1. We use the implicit representation of group
elements as introduced in [13]: For a € Z;, we define [a] = a - [1] € G as the
implicit representation of a in G. Let BG = (Gy, G2, Gr,q,[1]1, [1]2,€) be an
asymmetric bilinear group, where G1, Go, G are cyclic groups of order ¢. The
generators of G; and Gy are [1]; and [1]2 respectively. For s € {1,2,T} and
a € Zy, we define [a], = a - [1]; € G, as the implicit representation of a in G;.
The function e : G; x Go — G is an efficiently computable (non-degenerate)
bilinear map and because of the bilinearity, we get e([a]1, [b]2) = [a - b];. Note
that from [a] € G it is generally hard to compute the value a (discrete logarithm

problem in G).

6 Authors Suppressed Due to Excessive Length

2 Technical Overview

This section provides an overview of our major technical contributions, resulting
in the first fully adaptive, UC-secure, threshold partially oblivious PRF. In
Section 2.1, we gradually extend the standard 2HashDH OPRF to support the
threshold setting, proactive key refresh, partial obliviousness, and full adaptive
security. In Section 2.2, we formalize an ideal functionality that incorporates these
features, identifying three gaps in previous OPRF models. One gap has recently
been independently identified [17], but the other two remain unaddressed. Finally,
in Section 2.3, we describe our security proof and expose a gap in previous pOPRF
proofs where a critical event was incorrectly considered negligible. We show how
this event can be triggered without violating the OM-gapDH assumption and
solve the problem using a novel proof technique that may be of independent
interest.

2.1 A Fully-Adaptive Threshold Partially-Oblivious PRF

The primary goal of our work is to construct the first fully adaptive, UC-secure,
threshold partially oblivious PRF. In this section, we outline our approach.
Starting with the 2HashDH OPRF protocol, we introduce several modifications
to incorporate the necessary properties, step by step, leading to the final tpOPRF
scheme.

Starting Point: The 2HashDH OPRF [19]. Let H; : {0,1}* — G and
H : {0,1}* — {0,1}* be two hash functions. The 2HashDH OPRF computes
the following function:

Fi(2) = Hy (2, k- Hi(2)),

where the value x is the client input, and the key k is the server input. The
server and client execute an interactive protocol to evaluate the function in a
fully oblivious manner. In the first step, the client computes the hash H;(z) of
its input z, blinds it by multiplying it with a random scalar r, and sends the
blinded value [p] = r - Hi(x) to the server. The server multiplies its key k by
the blinded value to get [o] = k - [p] and returns it to the client. The client then
unblinds it by multiplying it by the inverse of r, resulting in k - H;(z). Finally,
the client calculates the output as Fy(z) = Hy(z, k- Hi(z)). This protocol is fully
oblivious since the server only learns a blinded value. Pseudorandomness follows
by modeling the hash functions as random oracles.

Extending 2HashDH into the Threshold Setting. We follow the approach
of Jarecki et al. [22] using Shamir’s secret sharing to support threshold security.
The underlying PRF remains Fj,(z) = H¢(x, k- Hi(z)), but the key k is shared
among n servers, each holding a key share k;. Any subset of ¢ servers can jointly
reconstruct k. To evaluate Fj(x), the client follows the 2HashDH protocol, but
interacts with t servers in parallel. Each server provides a partial evaluation,

A Fully-Adaptive Threshold Partially-Oblivious PRF 7

Osset,i - ki - Hi(z), which includes the server-set-specific Lagrange coefficient. The
client sums these partial evaluations to obtain & - Hy (), then computes the final
result as Fj(x) = Hy(z, k- Hi(2)).

The threshold extension improves both the security and the robustness of
the OPRF. Security is improved because an adversary must still interact with
at least one honest server to compute the OPRF, even if up to ¢t — 1 servers are
corrupt. Robustness is increased by distributing the server’s private key across
multiple servers, allowing the OPRF to be computed even if some servers are
offline.

Adding Proactive Key Refresh. Threshold security improves both security
and robustness, but leaves the problem of compromised servers: as more servers
are corrupted, security degrades to the point where it becomes equivalent to
single-server security when ¢ — 1 servers are compromised.

Key refresh mitigates this problem by allowing servers to update their shared
key material, resetting corruptions, and maintaining OPRF functionality. During
key refresh, the same key k is reshared so that PRF evaluations remain consistent,
but the refreshed key shares are incompatible with any previously corrupted
shares.

In the key refresh protocol, each server shares the integer zero using Shamir
secret sharing and sends each resulting share to one of the other servers. Each
server then updates its key by adding the shares received from the other servers
to its old key. Since only zeros are added, the overall key remains unchanged,
but previous key shares become invalid, effectively resetting any corruption and
separating the pre- and post-refresh states.

The rationale for not rotating the PRF key k is as follows. With n parties and a
threshold of ¢, consider any period between key refreshes. If the adversary corrupts
fewer than t servers (as required by the security definition), he cannot gain
sufficient information about k. This is even true in an information-theoretic sense,
due to Shamir’s secret sharing [29]. Key refresh renders previous shares irrelevant,
since they are independent of new shares. Thus, rotation of k£ is unnecessary.
If the adversary corrupts more than ¢ servers, security is compromised, and
no cryptographic approach can protect the key. The approach of keeping the
underlying key constant has been used in many previous works, such as [5, 22, 2,
17].

Handling Fully-Adaptive Corruptions. We focus on fully-adaptive adver-
saries, which can corrupt servers at any time. This contrasts with the weaker
semi-adaptive model, where the adversary must declare the corrupted servers
before each key refresh [4]. The challenge in our setting is that standard guessing
strategies, such as those used by Gu et al. [17] to prove security against fully-
adaptive corruption without key refresh, do not easily extend to the key refresh
scenario.

In a single period, the simulator has a non-negligible chance of correctly
guessing which servers the adversary will corrupt. However, since the number of

8 Authors Suppressed Due to Excessive Length

key refreshes is polynomial in the security parameter, this leads to an exponential
increase in loss. As a result, the probability of correctly guessing the corruptions
for each key refresh becomes negligible, making guessing strategies ineffective.

OUR_APPROACH. Our construction borrows ideas from Camenisch et al. [5], but
extends them to the threshold setting. To illustrate the main ideas, we start with
the observation that fully adaptive security can be achieved if the response of
each honest server appears uniformly random and independent of k;. In addition,
the threshold ¢ ensures that the result will be consistent with the PRF key only if
t of the responses are combined. This observation forms the basis of our security
proof. In Section 2.3, we describe the proof strategy used to establish security
under fully-adaptive corruptions.

We introduce an additive blinding value [5;] to make the distribution of the
server’s response uniformly random and therefore independent of k;. Now, the
server’s response is formed as

[Oi] — 6Sset,i . kl ! [p] + [IB’L]

To ensure that the sum of all [o;] still results in k - [p], we carefully craft the
blinding values, such that they cancel each other out when summing up the partial
evaluations. In more detail, we use a hash function H;, to compute the blinding
value [3;] as the sum of pairwise blinding values [8; ;] < A; ; - Hy(s:i,;, Sset, [pl1)
with A being the Kronecker delta (4A; ; = 1if i > j, and A, ; = —1 else). The
seeds s; ; are shared values per server pair (s; ; =s;;) which leads to

Z [8i] = Z Z [Bi;] = Z Z Ay He(sig,---)
i€Sset i€Sset jeSset\{i} i€Sset jeSset\{i}

Z Z ALJ"Hb(Si,j,...)-i-Aj,i'Hb(Sjﬂ',...)

1€Sset jESset;j<i

Z Z Hb(si,j>---)_Hb(si,j7-~-):07

i€ Sset jESset;j<i

such that the blinding values do not influence the final computation when they
are all summed up.

Realizing Partial Obliviousness. The final step is to convert the threshold
oblivious PRF into a partially oblivious one. The basic idea here is to split the
client’s input « into two parts: (priv, pus). The server remains oblivious to Zpriv,
while 3 is revealed to the server. To bind both inputs to the PRI evaluation,
we follow the approach of Everspaugh et al. [14] and use bilinear pairings in
our pOPRF construction. To illustrate the idea, we start with the 2HashDH
construction:

Fy(x) = Hy (2, k- Hi(2)),

but replace the evaluation of the hash function Hy(x) with e(Hy(2priv), Ha (Tpub))
and include both messages i, and p,s as input to the final hash. The hash
function H; now maps arbitrary bitstrings to the first base group G; instead of G

A Fully-Adaptive Threshold Partially-Oblivious PRF 9

as we are operating in a pairing-friendly group now. Furthermore, we introduce a
second hash function Hs that maps arbitrary bitstrings to the second base group
Go. This leads to the updated PRF

Fk (‘Tpriva (Epub) = Hf(xpriva Tpub, k- €(H1 ((Ep'riv)a H2 (mpub)))

We omit the threshold setting for better readability for the sake of this overview.
Yet, all the presented techniques for a fully adaptive t-out-of-n solution carry
over to this modification.

The linearity of the bilinear pairing allows the client to send the private
input blinded as before, [p]y + r- Hy (priv), while sending the public input in
the clear. Upon receiving the blinded private input and the public input, the
server can combine them by computing the bilinear pairing of [p]; and Ha(zpusp)-
Multiplying this result by the key k yields

[0y =k - 6([P]17H2($pub)) =k-e(r- Hl(l"priv)vHQ(xPub))
=k-r- €(H1(33priv)7 HQ(xpub))'

The server sends [o]¢ to the client, which can de-blind [0]; as before to obtain the
evaluation k - e(H1(Tpriv), H2(2pup)). Finally, the client computes the PRF value
by evaluating H ¢ (priv, Tpuv, k - e(H1(Zpriv), H2(Tpus)))-

2.2 Universal Composability: An Ideal Functionality Foprr

In this section, we define a UC functionality Foprr, starting with the single-
server setting. We then extend the model to handle the threshold setting and key
refresh. Lastly, we address the challenge of modeling the non-verifiability of the
OPRF. Throughout, we identify three gaps in existing ideal functionalities [19,
9] and propose solutions to resolve them. The first issue regarding the threshold
setting was independently identified and resolved by Gu et al. [17], the other two
remain open.

A Starting Point: Foprr. To simplify the discussion in this section, we focus
on a streamlined version of the Foprr functionality from [19, 9], illustrated in
Figure 1. We shall concentrate on three core properties:

1. the output of Fj(z) must be indistinguishable from that of a random function,

2. the server learns nothing about the input x or the output Fy(x),

3. each execution reveals only a single function evaluation.

The functionality has three interfaces. Eval is called by a client to initiate
an evaluation request. It takes an input x, stores the request in a queue, and
informs the adversary A of the request. The input x is not leaked to A, which
models the obliviousness. ServerComplete is called by A to indicate that the
server is willing to participate in an evaluation. The server is informed, and
the “ticket counter” is incremented. ClientComplete is called by A to indicate
that the evaluation request was successful and that the function value should
be returned to the client. The ideal functionality checks if the ticket counter is

10 Authors Suppressed Due to Excessive Length

The functionality assigns random values Fg(z) s {0,1}* for yet undefined Fs(z).

On (Eval, z) from any client C, do:
— record (C, S, z).
— send (Eval, C, S) to A.

On (ServerComplete, S) from A, do:
— send ServerComplete to S;
— increment tickets(S) + +.

On ClientComplete from A, do:

— if tickets(S) < 0 ignore the request, otherwise proceed.
— Retrieve record (C, S, z);

— decrement tickets(S) — —;

— output Fg(z) to C.

Fig. 1: Simplified UC functionality Fopgrr [19, 9].

positive to ensure that a server interaction has taken place. It takes the request
from the queue and decrements the ticket counter. Fopry returns the function
value to the client that it obtains from a table. If the table has no entry for the
entered input value, a fresh value is sampled uniformly at random, modeling the
indistinguishability from a truly random function. As we have seen, the ticket
counter is increased per response from the server and decremented per function
value that the client learns. This models the requirement that a client only learns
a single function value per server interaction.

Extending Foprr to the Threshold Setting. Compared to the single server
setting, an ideal functionality now has to take care of multiple servers. Thus, the
first modification is the introduction of individual ticket counters per server, which
is incremented when that specific server is involved in an evaluation protocol.
While increasing the ticket counter seems intuitive, the question arises of which
set of ¢ ticket counters should be decremented once a client learns a function
value, i.e., ClientComplete is called. To answer this question, we first explain
the approach of [22] and explain why it fails. Afterward, we present a solution to
the problem.

The Approach of [22]. To decrease the ticket counter when ClientComplete is
called, the ideal functionality of [22] chooses any ¢ servers with tickets(S;) > 0.
Unfortunately, it is not specified exactly which t servers are chosen. We take
“choosing the servers at random” as an example to show why this is problematic.
We demonstrate the problem with a simple example in which we consider a 2-out-
of-3 tOPRF. A sequence of two Eval queries (to servers (S1,52) and (Sz2,53))
and the corresponding four ServerComplete queries leads to the following ticket
counters:

tickets(S1) = 1, tickets(Sy) =2, tickets(S3) =1

A Fully-Adaptive Threshold Partially-Oblivious PRF 11

A ClientComplete query results in one of the following configurations, each with
probability é:

tickets(S1) =0, tickets(Sy) =1, tickets(S3) =1 (1)
tickets(S1) =0, tickets(S2) =2, tickets(S3) =0 (2)
tickets(Sy1) =1, tickets(S2) =1, tickets(S3) =0 (3)

Note that in configuration (2), only server Sy has tickets left. Therefore, another
ClientComplete query leads to a different outcome for configuration (2) in
comparison to the other configurations. Fioprr ignores the query for configuration
(2) because not enough servers have positive ticket counters. In other words, the
ideal functionality might, by chance, not answer legitimate requests.

The Solution. The natural solution to the problem is to let the adversary
decide which servers were involved in the computation of a certain value. The
ClientComplete interface is extended to take a server set as input, and the ideal
functionality decrements the ticket counters of those servers. As a consequence,
the simulator in a proof now has the responsibility of monitoring server responses
and associating them with an evaluation [17].

Extending Fioprr to Support Key Refresh We extend Fioprr to support
server de-corruption through key refresh. This introduces challenges in man-
aging ticket counters, as handling residual tickets from prior ServerComplete
operations (before key refresh and de-corruption) is non-trivial.

The Approach of [2]. The strategy of the ideal functionality of [2] is to set all
remaining ticket counters to zero once a key refresh happens. At first glance, this
strategy seems reasonable, as results obtained from the computation with old keys
should be of no relevance in the current epoch with updated keys. Indeed, this
intuition holds for each protocol run, in which only some ServerComplete were
sent. Since there are missing ServerComplete calls, after key refresh, the client
has no way to obtain the missing responses, as the uncorrupted keys consistent
with the responses from before the key refresh are erased. Thus, it seems that the
ticket counters can be safely set to zero. However, the intuition does not hold in
the situation where all ServerComplete were already sent before the key refresh,
but the ClientComplete was not called yet. In this case, the client obtained
all the information that requires the private state of the servers. Moreover, the
combination of this obtained information is independent of any epoch, as the
combined key stays constant throughout the key refresh. Consequently, a client
should be able to use this epoch-independent information in any epoch. Still,
the ideal functionality will deny ClientComplete as all ticket counters are set to
zero. Modeling key refresh as in [2] lets the environment distinguish a protocol
in the real world from the ideal functionality.

12 Authors Suppressed Due to Excessive Length

Our Solution. To address this issue, we decouple the ClientComplete check—
whether a query is prohibited—from the actual transmission of the function value
to the client. Therefore, we introduce an additional interface CheckServers that
already marks a recorded query as accepted if enough honest servers were involved
in answering the query. This allows the simulator to “register” ClientComplete
queries (using the new CheckServers interface) before a key refresh (and, conse-
quently, before erasure of the tickets) while still completing the evaluation once
the adversary permits the client to learn the function value.

Handling Function Labels. Counterintuitively, modeling an “unverifiable”
OPRF is more complex than modeling a verifiable one. The ideal functionality
of a verifiable OPRF requires only a single function table that always returns
the correct value. In contrast, an unverifiable OPRF must maintain multiple
function tables because corrupted servers may consistently use incorrect keys.
Baum et al. [2] introduce labels to identify these tables, representing different
PRF keys; the adversary specifies a label with each ClientComplete query to
indicate which key was used in the evaluation. The label hon denotes the key
used by honest servers.

Rate-limiting guarantees apply only to the hon key. A dishonest client could
repeatedly combine an honest server’s response with different responses of dishon-
est servers to obtain multiple PRF values from a single interaction with an honest
server. Still, these values must match the function tables to ensure consistency
for future evaluations between an honest client, a subset of honest servers, and
potentially dishonest servers. Therefore, ticket counters are decremented only
when the hon label is used.

However, the ideal functionality in [2] models an unverifiable OPRF with
multiple function tables but treats all labels the same, inadvertently providing
rate-limiting guarantees for dishonest executions. This incorrectly implies that
any OPRF evaluation—even with an incorrect key-requires interaction with
an honest server. Our fix is straightforward: we check and decrement ticket
counters only when values associated with the hon label are requested, and we
ignore the counters for all other labels. Consequently, our approach enforces rate-
limiting guarantees for evaluations under the hon key, while allowing unrestricted
evaluations under incorrect keys.

2.3 Proving Security

We present our security proof for the tpOPRF construction with respect to the
ideal functionality. We defer the formal proofs to the full version of the paper.
We start with the proof strategy for the standard 2HashDH scheme, extend it to
the fully-adaptive threshold setting, and then to the partially oblivious setting,
thereby introducing our novel proof technique.

In the context of partial obliviousness, we identify a gap in the proof of
previous works [2, 17]. Intuitively, we can create a setting in which the adversary
lacks sufficient solutions to break the one-more assumption; while it can compute

A Fully-Adaptive Threshold Partially-Oblivious PRF 13

solutions for one public value, it cannot do so for another public value. (see “Proof
Gap: The Gap between One-More and One-More” for details). A straightforward
solution to fill this gap would be to use general-purpose non-interactive zero-
knowledge proofs (NIZKs) or to exploit the algebraic group model (AGM).
However, we deviate from these approaches to preserve weak assumptions and
to reduce computational complexity. Instead, we fill the gap in the proof by
introducing a novel proof technique that we believe is of independent interest.

The OM-gapDH assumption. We recall the One-More Gap Diffie-Hellman as-
sumption (OM-gapDH), which is the standard assumption for proving security of
OPRFs [19, 21, 22, 20, 2, 17|. Intuitively, it states that no efficient adversary can
solve more Diffie-Hellman instances than allowed. Given a public key [k] and ac-
cess to three oracles, the adversary’s goal is to compute additional solutions. The
first oracle, Targ, outputs random group elements [z]| that form Diffie-Hellman
instances with [k]. The second oracle, Help, returns k - [z'] for any input [z'],
effectively solving the Diffie-Hellman problem for [k], [z']. The third oracle, DDH,
checks whether [x; - 23] = [23 - 4], which tests whether the discrete logarithms
between [z1], [z2] and [z3], [x4] are equal. An adversary wins if it outputs one
more solution than the number of queries it made to Help; Formally, after ¢ calls
to Help, it must produce ¢ + 1 pairs (i, 0) such that o = k - [x;], where [x;] is the
i-th output of Targ.

Proving 2HashDH secure. To prove the UC security of 2HashDH, we construct a
simulator such that the ideal functionality, in combination with the simulator,
is indistinguishable from the real protocol. The main task is to show that the
evaluation of the PRF on a given input « matches the value returned by the ideal
functionality for x. Therefore, we answer queries to Hy of the form (z, % - Hi(x))
as follows: query the ideal functionality on input and program the hash function
to return the result of that query.

This strategy leads to a problem if the ticket counter of the ideal functionality
is zero, and it refuses to answer the query. In that case, the simulator cannot
program Hy to return the correct value because the correct value is unknown to
the simulator. We show that this event only happens with negligible probability,
as we can break the OM-gapDH assumption if it does.

The simulator has to solve three main tasks: (i) injecting challenge elements
from Targ, (ii) scalar multiplications with the key k for every ServerComplete
query, and (iii) solution extractions. Task (ii) can be forwarded to the Help oracle
of the OM-gapDH assumption. Tasks (i) and (iii) are solved by exploiting the
random oracles. Random oracle H; answers every query with a challenge element
obtained from Targ. The simulator observes random oracle Hy and checks every
query with the DDH oracle if it is of the form (x, %k - Hy(z)). If so, the input to
Hy is a valid solution to the OM-gapDH assumption.

Note that we tie the ticket counter of the ideal functionality to the number
of Help queries that the simulator does not have a solution for. Every time
ServerComplete is called, the ticket counter is incremented and the simulator
queries Help exactly once. Every time H is queried on a valid input, the simulator

14 Authors Suppressed Due to Excessive Length

obtains a solution and calls ClientComplete, which decrements the ticket counter.
This allows the simulator to query the ideal functionality for every valid query
(x,k-Hi(z)) to Hy that the environment obtained through interacting with the
simulator. If the environment submits an additional valid input to Hy for which
the simulator cannot query the ideal functionality, it breaks the OM-gapDH
assumption by providing that “one-more” solution.

Fully-Adaptive Threshold. The main observation that enables fully-adaptive
security is that we can make a server’s response look uniformly random and,
thereby, independent from k; while the corresponding server is honest. Only
when t responses are combined, the computation as a whole is consistent with
the PRF key. Now, the simulator can sample the first ¢ — 1 responses uniformly
at random and only compute the last response in a way that the combination
of all ¢t responses is consistent. In more detail, the simulator computes the last
response [0;] via
o] =k-lp]— > o,

icSset\ {5}

where k - [p] is obtained from the Help oracle that the assumption provides. This
allows the simulator to leave honest key shares undefined and only sample key
shares of corrupted servers just in time once a corruption is requested.

To make things consistent, once the server is corrupted and the secret key is
defined, we program the random oracles. Therefore, the simulator goes through
all previously computed answers and samples undefined blinding values f3; ; <
Hy(s; 5, Sset, [p]) uniformly at random until there is only one undefined blinding
value left. It programs H; for that value as

Hb(SZ"j, Sset, [p]) —

l0i] = Osseti ki~ [Pl — > Aiu-Hy(siz, Sset, [p])
1€ Sset\{i,j}

It is important to see that there must be at least one undefined blinding value
for this to work. This holds true because the adversary can corrupt at most ¢ — 1
servers such that at the point of corruption, at least one server remains honest.
The pairwise blinding value between the now corrupted server and the server that
remains honest is still undefined and can now be used to make things consistent.

Partial Obliviousness. Before we introduce the challenges associated with proving
security for a partially oblivious PRF, we quickly recap how we changed our
construction to transition from a fully to a partially oblivious setting. Most
importantly, we switch to a pairing-friendly group consisting of two groups
G1, Go, a target group G, and a bilinear pairing e that maps two group elements
of G1 and Gs respectively to Gr. We use the notation e([z]1, [y]2) to denote the
bilinear pairing. Furthermore, we use two hash functions H; and Hs instead of a
single one. H; is used to hash the private input to G; and the public input is

A Fully-Adaptive Threshold Partially-Oblivious PRF 15

hashed to Go using Hs. The hash values are combined using the bilinear pairing.
The combined element is multiplied by the key k, resulting in

k- e(Hi(zpriv), Ho(Zpup))-

Given that we are no longer working in a single group, the OM-gapDH
assumption does not fit the setting anymore, and we switch to the bilinear
version of the assumption called the One-More Bilinear Gap Diffie-Hellman
(OM-B-gapDH) assumption. Instead of one, there are now two Targ oracles that
return random group elements from G; and Gg, respectively. The Help and DDH
oracles operate in the target group. A valid solution is of the form (¢, j, o) such
that o = k- e([z;]1, [yj]2) where [z;] is the i-th response and [y;]2 is the j-th
response from the Targ, and Targ, oracle, respectively. An adversary breaks the
OM-B-gapDH assumption if it provides ¢ + 1 distinct solutions while querying
the Help oracle at most ¢ times.

The proof strategy for adapting 2HashDH to the partially oblivious setting,
as proposed by Baum et al. [2] and later employed by Gu et al. [17], involves
utilizing the random oracles H; and Hs to embed challenges from Targ; and
Targ,, respectively, rather than relying solely on H;. However, this approach does
not work.

Proof Gap: The Gap Between One-More and One-More. The pOPRF ideal
functionality has separate ticket counters for each public input x,,;. This captures
the requirement that a client interacting with a server for x,,, only learns a
single PRF value fi(-,zpus). The use case of password-based authentication
makes this requirement clear. Here, pPOPRFs prevent brute-force attacks against
the password by restricting authentication attempts per user using the password
as the private input and the username as the public input. If an adversary
could submit a password guess associated with a public value x,,; but obtain
a PRF value for a different x,,s, then the adversary could bypass the limit on
authentication attempts by using different usernames for each password guess.
In a way, each xp,p value opens up a new “domain” and with it a new “one-more
condition”. The environment can distinguish the real from the ideal world if it
breaks any one of the “one-more conditions”.

In contrast, the OM-B-gapDH assumption does not distinguish between dif-
ferent inputs when counting Help queries. Rather, it counts all Help queries
regardless of the input. As a result, the assumption only has a single “one-more
condition” that must be broken to break the assumption. This gap between
the multiple domains (or “one-more conditions”) in the ideal functionality and
the single domain (or “one-more condition”) can lead to a situation where the
environment distinguishes the two worlds, but the simulator is unable to break
the OM-B-gapDH assumption, effectively breaking the security reduction.

We demonstrate this discrepancy by sketching an environment that uses
the simulator to break the OM-B-gapDH assumption. Intuitively, the environ-
ment sits between the simulator and the OM-B-gapDH assumption and simu-
lates an instance of the assumption that we call OM-B-gapDH® (see Figure 2).

16 Authors Suppressed Due to Excessive Length

[:OM»B—gapDH‘E: P4]

1 B

[S ’ [FpOPRF

Fig.2: The environment £ that uses the simulator S of [2| to break the
OM-B-gapDH assumption.

OM—B—gapDH‘€ is simulated such that all queries to Targf and Targg are forwarded
to the corresponding oracles of OM-B-gapDH. The counterexample consists of
five simple steps (the explicit message flow can be seen in the full version of the
paper):

1. The environment sends a regular evaluation request ([p]1, Zpus,) to the server.
Note that any party (including A) can send those requests to the server. The
simulator computes Hy(2pus,) using Targ$, which the environment forwards
to Targ,. The simulator answers the query using the Helpg oracle [o]; +
Help® (e([p]1, H2(%pup,))), which the environment forwards to Help. This leads
to the ticket counters

tickets(zpup,) = 1, tickets(Tpupy) =0

and the internal counters of the assumptions

2. The environment sends a re-randomized version of the first evaluation request
(a - [pl1, Zpup,). Therefore, the environment can answer the following Help®
query sent by the simulator to OM-B—gapDH‘E without a Help query to
OM-B-gapDH as it knows the re-randomization factor a ([0']; < a-[o0]¢). This
leads to the ticket counters

tickets(xpup,) = 2, tickets(Tpupy) =0

and the internal counters of the assumptions

3. The environment prepares the evaluation for (2pup,, Tpriv) by sending the
inputs to the corresponding ROs H; and Hsy. The simulator answers those
queries using Targf and Targg, which the environment forwards to Targ, and
Targ,, respectively.

A Fully-Adaptive Threshold Partially-Oblivious PRF 17

4. The environment computes the solution [0"]; < k - e(H1(Zpriv), H2(Zpubs))
for that evaluation using a Help query to OM-B-gapDH. At this point, the
number of Help queries to OM-B-gapDH and OM-B-gapDH® are

05:2, c=2.

5. The environment sends the valid query (zpuby, Zpriv, [0”];) to the random
oracle Hy. To program the answer correctly, the simulator has to send a query
to the ideal functionality. The ideal functionality refuses to answer because the
ticket counter for xpyp, is tickets(zpup,) = 0 (the fact that tickets(xpup,) = 2
does not make a difference here). According to the proofs in [2] and [17], the
simulator now breaks the OM—B—gapDHE assumption. Because the number of
Helpg queries is ¢ = 2, it outputs three valid solutions, which the environment
forwards to OM-B-gapDH.

Note that all queries to Targ‘ls and Targg were directly forwarded to the cor-
responding Targ oracle of the OM-B-gapDH assumption, such that every valid
solution to OM-B-gapDH¢ is also a valid solution to OM-B-gapDH. Therefore,
the environment breaks the OM-B-gapDH assumption with the three solutions
provided by the simulator, which leads to a contradiction because we assume
OM-B-gapDH to be hard. Consequently, a simulator that returns those three
solutions cannot exist.

Fizing the Gap with Heavy Solutions. The above approach fails because a missing
solution for one public value cancels out the additional solution for another public
value. If the simulator were able to get a solution directly from the Help query
without having to wait for the solution from a query to H¢, there would be no
Help query without a solution that could cancel out the additional solution.

A straightforward modification that allows the simulator to compute a valid
solution for each Help query is to require the client to send a witness extractable
zero-knowledge proof to the server with every Eval query. This proof shows
that the client knows a private value x,,,, and a blinding factor r such that
[pl1 = 7-Hi(zpriv). When the simulator receives such a query, it can extract T,
and r from the proof and submit e(Hq(2priv), H2(2pus)) to the Help oracle. The
response from Help is a valid solution to the OM-B-gapDH assumption, and the
simulator can compute the server’s response by re-blinding the result with r. This
approach has a significant drawback since the statement of the NIZK involves a
hash function, such that the zero-knowledge proof must be general-purpose. This
results in significant computational overhead, making this method impractical
for many real-world applications.

A similar approach without the computational overhead is to use the Algebraic
Group Model (AGM) [15]. On an intuitive level, the AGM requires the client
to send an algebraic representation alongside each group element it sends. An
honest client would send [p]; = - Hi(2priv) to the simulator with its Eval query.
Similar to the approach using NIZKs, the simulator would learn the blinding
factor r, solving the issues. Handling queries from dishonest clients is slightly
more complicated but still possible. Yet, we also deviate from this approach

18 Authors Suppressed Due to Excessive Length

since the AGM is considered a strong assumption, and we try to use as weak
assumptions as possible.

Our Nowvel Proof Technique. As we have seen, we can avoid the issue if we
immediately get a solution from every Help query. A different approach is to
avoid “unnecessary” Help queries, namely those from all domains that are not
the ones where the break happens, such that they cannot cancel out additional
solutions.

To see how we can simulate the output of the Help oracle in certain domains,
we take a step back and observe that for computing the value

k- e([pl1, Ha(zpub)),

we have to “combine” three components: (i) the uniformly random value [p]; with
[pl1 =7 Hi(@priv), (il) the hash of the public value Ha(zpyp), and (iii) the key k.
To “combine” these three elements, we can “combine” two group elements using
the bilinear pairing while the third element can only be included with scalar
multiplication. In the real protocol, the two group elements have to be [p]; and
Ha(2pup) because for scalar multiplication, the discrete logarithm must be known,
which cannot be computed efficiently. Likewise, the client cannot extract the key
k from the public key [k] such that the key has to be included by the server via
scalar multiplication.

To avoid the “unnecessary” Help queries in our proof, we refrain from the
combination of the real protocol and, instead, include the public key as an element
of the bilinear pairing. Since we can only combine two elements using the pairing
and have to incorporate the third element by scalar multiplication, we need to
know the discrete logarithm of either [p]y or Ha(zpyup). Since the value [p]; is
uniformly random and chosen by the client, [p]; is not in question as a candidate
for incorporation via scalar multiplication. Therefore, we input both [k]o and [p];
in the pairing leading to the element

e([ph, [kl2) = k- e([pl1, [1)2)

In order to also include the value Ha(zpy) into the computation, we use the
programmability of the random oracle and program Hs(zp.,) = [a]2 for a known
but uniformly random scalar a. Knowing the trapdoor a, we can compute

a-e([pl, [kl2) = a-k-e([pl1, [1]2) = k - e([pl1, [a]2) = & - e([pl1, Ha(Tpup)),

which preserves correctness. This strategy brings us one step closer to achieving
our goal of closing the gap between the “multi-domain” and “single-domain”
worlds of the ideal functionality and the assumption.

While this solution helps us with the domain issue, it also imposes a challenge
for the reduction: If the environment manages to provide one more valid query
to Hy, the simulator has to use this valid query to output an additional valid
solution to the OM-B-gapDH assumption. Otherwise, the simulator cannot break
the OM-B-gapDH assumption in case the environment distinguishes the real from

A Fully-Adaptive Threshold Partially-Oblivious PRF 19

the ideal world. By the OM-B-gapDH assumption, a solution is only valid if both
H1(zpriv) and Ha(xpys) are challenge elements returned by Targ; and Targ,. This
is not the case if we follow our new strategy always, and Hy always returns values
[a]2 that it knows a to. Therefore, we guess the public value ZTpup” that the break
happens for and deviate from our trapdoor-injection technique for Ha(z,u*) by
returning a challenge element from Targ,. In a way, this isolates the crucial one
of the domains (or “one-more conditions”) from the others, such that the others
cannot cancel out solutions for the crucial one. This closes the aforementioned
gap between multiple “one-more conditions” in the ideal functionality and the
single “one-more condition” in the assumption because only a single public value
is connected with the assumption. We summarize the differences in how the
random oracles are connected to the Targ;, Targ,, and Help oracles and compare
our Domain-Isolating Oracle Programming technique to the work of 2, 17], in
Table 2.

Hsimulator in [2, 17] IDIOP

Hi(zpriv) Targ, Targ,
Tpub = Tpub Tar
Ha(zpus) elpse ’ Targ, [a]2g2: a-[1a

b ellph, HaCepun)) 0 = 77| Help(e((ph, Ha(pun))) 1o 0P et ™))

Table 2: Comparison between our novel Domain-Isolating Oracle Programming
(DIOP) proof technique and the strategy used by Baum et al. [2] and Gu et al.
[17].

3 Preliminaries

OPRF. An OPRF is a two-party protocol between a client and a server realizing
functionality (fx(x), L) < (C(z),S(k))eval for a PRF family f5.

The OM-B-gapDH assumption. We already introduced the related OM-gapDH
assumption on an intuitive level in Section 2.3 and formally define OM-B-gapDH
here. The “One-More Bilinear Gap Diffie-Hellman” (or OM-B-gapDH) assumption
is a variant of the OM-gapDH assumption that works on an asymmetric bilinear
group. Consequently, it has two oracles Targ,, Targ, that return random elements
from groups G; and Go, respectively. Solutions now have the form (4, j, o) such
that o = k-e([x;]1, [yi]2), with ; returned by the i-th call to Targ; and y; returned
by the j-th call to Targ,. The Help and DDH oracles take group elements from
Gr. Figure 3 shows the OM-B-gapDH game.

Definition 1 (OM-B-gapDH). The One-More Bilinear Gap Diffie-Hellman as-
sumption holds in bilinear group BG of prime order q if for any PPT adversary

20 Authors Suppressed Due to Excessive Length

A there exists a negligible function negl(-) such that
Pr[OM-B-gapDH 4 (BG)] < negl()),

where the randommness is taken over the random coins of the experiment and the
adversary.

OM-B-gapDH(BG) Targ, () Targ,()
k<+sZ, cip+cie+1 c2¢ < c2,0+ 1
C,C1,t,C2,t < 0 [l‘cl’th 3 G [ycm]z 3 Go
O := {Targ,, Targ,, Help, DDH} return [z, ,]1 return [y,]

(i17j1,0'1), ey (ie,jg,o’g) — AO(UC]Q)

assert ¢ < { DDH([z1], [y1]e, 2]t [y2]e) Help([2]¢)
assert Vo : (ia < c1,t) A (Ja < c2,t) di dLOg[zl]t([yl]t) cctl
assert Va # B : (i, jo) # (ig, jg) dz < dLog,,), ([y2]+) return k - [2]:

return Vo : k- e([zi)1, [Uju]2) = 0o return di = do

Fig. 3: Security game for OM-B-gapDH.

4 Ideal Functionality Fi,oprr

We define our ideal threshold partially oblivious PRF functionality Fipoprr
in Figure 4. It formalizes secrecy of private inputs zp;,, correctness of the
output while all servers are honest (but not verifiability of the output, i.e.,
correctness when some corrupted servers are involved), and rate limiting with
respect to evaluations of the “correct” PRF. Since Fipoprr follows the discussion
in Section 2, Figure 4 is mostly self-explanatory, except for two details.

Firstly, Fipoprr guarantees correctness of the output only if all servers have
been honest for the entire duration from start to end of an eval request. Some
works, such as [2], define a slightly stronger notion that guarantees correctness if
all servers are honest when the output is generated, even if some servers were
malicious while the request was ongoing. This is too strong for protocols that do
not involve clients in key refresh, such as the one in this paper: a malicious server
might send an incorrect response to a client and then perform a key refresh to
become honest again before the response is delivered. Since the client is unaware
of the key refresh, once he receives the response, he would still finish his previous
eval request and generate an incorrect output, even though all servers are honest
at the time of output. We note that slightly weakening the correctness property
is not an issue. Correctness guarantees of non-verifiable OPRFs as modeled by
FipoPRF are already extremely weak to begin with and basically serve more as a

A Fully-Adaptive Threshold Partially-Oblivious PRF 21

The functionality keeps several independent random functions Figpei(Zpub; Tpriv), where label is
a string that denotes a specific function. The special label label = hon denotes the “correct”
function for which correctness and rate limiting are provided. It assigns random values
Fraper(Zpub, Tpriv) <5 {0, 1}>‘ whenever not yet defined.

Initialize tickets(S;, Tpup) < 0,Vi € {1,...,n}.

On (Eval, Zpub, Tpriv) from any client C, do:
— record (C, Tpub, Tpriv)-
— send (Eval, C, zpyp) to A.

On (ServerComplete, Tpyp) from server S;, do:
— increment tickets(Si, xpus) + + and notify A.

On (CheckServers, C, HonServerSet) from the adversary A, do:

— retrieve (but keep) record (C, Zpup, Tpriv)-

— let n. be the number of currently corrupted servers. Check that HonServerSet has size at
least t — n. and contains only honest servers S; with tickets(S;, €pyp) > 1 that are willing
to help with a PRF evaluation; if this fails, abort.

— Decrement tickets(S;, xpup) — — for all S; € HonServerSet.

— Mark the record (C, Zpub, Tpriv) as accepted by the servers and return control to A.

On (ClientComplete, C, label) from the adversary A, do:

— retrieve (and delete) record (C, Zpup, Tpriv)-

— ifall S;, ¢ € {1,...,n} have been honest since the record was stored, set label < hon.

— if label = hon and the record (C, Zpub, Tpriv) is not marked as accepted by the servers (see
CheckServers command), abort and return an error to A.

— output Flabel(zpubv xp?‘i‘u) to C.

On HonestKeyRefresh from the adversary A, do:
— reset all S; to be honest and reset all tickets to 0.

On (Corrupt, P) from the adversary A, do:
— adaptively corrupt party P (for servers S; only until at most t — 1 are corrupt).

In addition, A can also start PRF evaluations on arbitrary pup,ZTpriv, and label
and obtain the output for himself/a corrupted client. The logic is the same as for
Eval, CheckServers, ClientComplete but with one difference: unlike honest clients, A only has to
determine x,,;, when the output is generated, i.e., as part of the ClientComplete step. This
slight relaxation does not weaken intended security guarantess but is formally necessary for the
simulator in our security proof.

Fig. 4: Summary of our ideal threshold partially oblivious PRF functionality
Fipoprr With n servers S; and threshold 1 <t < n.

functional sanity check rather than a security property. If an application requires
correct OPRF outputs, it would rather use a verifiable OPRF.

Secondly, in Foprr (cf. Figure 1), which we used as our starting point, the
adversary A decides when a server is willing to complete a PRF evaluation by
sending the ServerComplete message; higher-level protocols are only notified
of this decision. In our Fi,oprr (cf. Figure 4), this is reversed, and we let
higher-level protocols decide by sending the ServerComplete message, with
the adversary only being notified. Both of these definitions formalize the same
security guarantees—there will be no more evaluations than permitted by honest
servers—and are therefore interchangeable for analyzing the security of real OPRF
protocols. They do, however, differ in the context of hybrid protocols. Since
the adversary decides in Foprr, & security proof of a hybrid protocol on top of
Foprr cannot rely on any specific rate-limiting algorithm being used. In contrast,
and if desired, one can build hybrid protocols on top of Fi,oprr that fix a specific

22 Authors Suppressed Due to Excessive Length

rate-limiting algorithm-say, servers are only willing to evaluate on public inputs
following a certain format—and then use this property in a security analysis. Due
to this potential advantage, we chose the latter definitional style for Fipoprr.

5 Construction

In this section, we present our construction for the UC-secure fully-adaptive
partially oblivious PRF. Because the motivation for the chosen building blocks
has been detailed in Section 2.1, we omit a high-level overview here and instead
provide a detailed description of the complete protocol flow.

Setup. To set up tpOPRF, one samples a bilinear group BG, samples a total of
five hash functions, and stores the group description, the threshold parameters
(t,n), and the description of the hash functions in the public parameters pp. A
formal description of the setup procedure is given in Figure 5.

Setup(A, n,t) Key-Gen(pp)

1: BG «+s GGen(\) 1: k+sZ,

2: Hi+s${H:{0,1}" — G1} 2: {ki}ic(n) < Share(k,n,t)
3: Hz<s${H:{0,1}" — G2} 3: for i€ [n] do

4: Hy +s{H:{0,1}* = {0,1}*} 4: for j € [n]\ {i} do

5: Hy+s{H:{0,1}" = G} 5: ifi<jis;; +s{0,1}"
6: Hy<s{H:{0,1}" — {0,1}"} 6: else :s;; < sy

7: pp< (BG,n,t,Hy,Ho, Hy, Hy Hy) 7o osky = (ki, {sij}iemniiy)
8: return pp 8: return {sk;};cqn

Fig. 5: tpOPRF Setup and Key-Generation

Key Generation. The key generation algorithm samples a random key k, which
will serve as the final PRF key. This key will never change during the lifetime
of an OPRF (note that the key refresh will change the shares of this key, but
not the key itself). The key generation algorithm shares k using Shamir secret
sharing with parameters (t, n), such that each set of t servers can reconstruct k. In
addition, it samples uniformly random bilateral seeds s; ; for each pair of servers
(i,5) € [n]7,;. Tt holds, that s; ; ='s; ;. Looking ahead to the evaluation protocol,
the blinding factors of two corresponding servers will cancel each other out since
s;; = S;,;- We formally describe the key generation algorithm in Figure 5.

FEvaluation. In the evaluation protocol, the client takes as input a public value
Zpub, @ private value x,.;,, and public parameters pp. Each server takes as input
its secret key sk, and public parameters pp. The client chooses a set of t servers
Sset from the set of acceptable server sets Teet. First, the client hashes the private

A Fully-Adaptive Threshold Partially-Oblivious PRF 23

input ., to group G; and blinds that hash by multiplying it with a uniformly
random value r, resulting in [p]; < r - H1(Zpriv). It sends the blinded value [p]1
along with x,,, and Sset to each server in Sset.

After receiving the triple from the client, each server contained in Sset
performs the following steps: it evaluates the pairing on the blinded value [p];
and the public value zpy,, which is hashed to group Gg, resulting in [o]; <
e([pl1, H2(zpup)). The server computes a blinding value [3;]; as the sum of pairwise
blinding values [f; ;]:, each multiplied by the Kronecker delta A; ;. The pairwise
blinding values are computed as the hash of the mutual seed s; ; and the message
received from the client, resulting in fresh blinding values per request. For one of
the servers computing [3; ;]¢, A ; is 1, and for the other, it is —1. Therefore, when
added, they cancel each other out. The server multiplies [0]; with its key share
k; and the Lagrange coefficient dgs¢;,; corresponding to the server set. Finally, it
adds the blinding value and sends the resulting [u;]; back to the client.

Once the client has received all [u;]¢, it adds them up to obtain r - k -
e(H1(@priv), H2(zpup)). Note that the sum of all [u;]; does not contain any blinding
values because the blinding values consist only of pairs A; ;- [3; ;] and A; ;- [8;.:]¢
that add up to zero. The client computes the final PRF value by computing the
hash of the two input values Zpup, Zpriv and the unblinded response from the

servers [u];/r =k - e(H1(2priv), Ha(2pup)), resulting in y Hy (xpuby Lpriv, m)

T
We formally describe the evaluation protocol in Figure 6.

Evaluation Protocol

Client(zpub, Tpriv, Sset, pp) i-th Server(sk;, pp)
Choose Sset <% Tt servers

for current round.

r s Z:; parse sk; as (ki,{siyj}jg[n]\{,;})

[Pl 7+ Hi(wpriv) (Pl1, @put, Sset) [o)e + [p]1 - H2(pus)

[Bi,jlt < Hu(sij, Sset, xpup, [p]1)
Bile < D> Aij-[Bisl
jESset\{i}
J Ai;=1if i > 5, —1 else

[wle > [uile [14i]e [wile Ssuer,i - ki - [ole + [Bile
1€ Sset

ult
Y Hf (xpulnxln"i'lh %) / OSset,i =

J

jesseniy 1 Tt

return y return T,

Fig. 6: tpOPRF Evaluation

Key Refresh. In the key refresh protocol, each server updates its key share k}
and computes new bilateral seeds s ; that match between two servers (s ; = s/ ;).

24 Authors Suppressed Due to Excessive Length

Every server computes a Shamir secret sharing of zero and sends the shares to
the other servers. After receiving the shares from all other servers, it adds these
zero shares to its old share k;. The resulting share & is independent of the old
one because the added shares are uniformly random. Note that reconstructing
the key with the updated shares still yields the initial key &, as only sharings of
zero were added to the old shares. Every two servers perform a Diffie-Hellman
key exchange and hash the result to obtain a fresh seed sg’j, that is consistent
but random s; ; = ;.

We deliberately employ non-verifiable secret sharing in this protocol. While
verifiable secret sharing (VSS) could protect against dishonest shares during the
refresh phase, the system’s robustness is already limited by two unavoidable
adversarial capabilities: (i) a network-level adversary can drop messages to prevent
a client from receiving server responses, and (ii) a compromised server can erase
its internal state, including its share. Given these limitations, our primary focus
is on preserving security, rather than ensuring robustness against every possible
form of disruption. Should stronger robustness be desired—for instance, to defend
against incorrect shares during refresh—substituting the underlying secret-sharing
scheme with a verifiable variant would be a natural extension.

We depict the key refresh protocol in Figure 7.

i-th Server(sk;, pp)

1: {k;;} <3 Share(0,n,t)

2: for j € [n]\ {i} do

3: ai,j <% Z;, [Ai]t < aij;-[1]+
4: send (k; j,[A;j]t) to S;

5: receive (kj;,[Aj i]:) from S;
6: ki< kit > kji

J€[n]

7: for j e [n]\{i} do

8: [Bijle ¢ aij- [zl

9: s;.; < Hs([Bijle)

10 : return (k;, {S;‘j}je[n]\{i})

Fig. 7: tpOPRF Key Refresh

6 Proof

In this section, we give a high-level idea of our proof and defer to the full version
of the paper for the formal proof of security. We prove our construction to
be UC-secure and show that our protocol Pi,oprr realizes the ideal tpOPRF
functionality Fi,oprr (see the full version of the paper for the formal definition
of Fipoprr). As part of the security proof, we construct a simulator such that-as

A Fully-Adaptive Threshold Partially-Oblivious PRF 25

is common—an environment cannot distinguish whether it interacts with the real
protocol Pypoprr or the ideal functionality Fipoprr (connected to the simulator).
In other words, we show that an adversary learns at most as much from the real
protocol as it learns from the ideal protocol. We prove the indistinguishability of
Piporrr and Fipoprr under the OM-B-gapDH assumption.

We assume server-sided authenticated channels, which can be realized using
TLS. We require authenticated channels to ensure correctness in the presence of
honest servers: without authentication, the adversary could arbitrarily tamper
with messages from honest servers, potentially violating correctness. However,
we emphasize that authenticated communication is not necessary for security,
and our security guarantees hold even in the absence of authenticated channels.
Additionally, we assume secure erasure for the client, which is equivalent to
assuming that the client only gets corrupted after it has no pending evaluation
queries.

We model both honest and dishonest executions of the key refresh protocol.
Honest key refresh is used to restore security guarantees for previously compro-
mised parties, while dishonest key refresh does not result in de-corruption. We
formalize the following implication: if key refresh is executed correctly—i.e., it
proceeds without adversarial interference, is executed atomically, and takes place
over secure channels—then it effectively resets the internal state of the involved
parties, thereby restoring their security guarantees. We refer to this scenario as
honest key refresh. Our model also allows the adversary to trigger a dishonest key
refresh, where corrupted parties execute the protocol under adversarial scheduling
and potentially over compromised channels. In these cases, the resulting key
material remains under adversarial control-security is neither broken nor restored,
and previously corrupted servers remain compromised.

Theorem 1. Let A € N be the security parameter. Let Py,oprr be our protocol
and Fipoprr be the ideal tpOPRF functionality as defined in the full version of
the paper. Let n,t € N be the number of servers, respectively the number of servers
necessary to evaluate in Pyoprr. Suppose the OM-B-gapDH assumption holds
true, then

Piporrr < FipoPRF

in the (Fautn, Fis 200Ny hybrid world.

The simulator S operates as a single machine connected to the ideal function-
ality Fipoprr and the environment £ through their network interfaces. During
execution, S accepts and processes all incoming messages. Internally, it mostly
emulates the real-world protocol Pi,oprr and uses the information leaked by
FipoPRF to construct messages for the environment indistinguishable from those
originating from real parties. In the event of server compromise, S outputs a
secret key, adequately responds to adversarial messages, and consistently answers
queries to the random oracles. We only consider the behavior of honest parties,
forwarding messages addressed to corrupt parties to the environment. The com-
plete simulator strategy of S is depicted in the full version of the paper.

26 Authors Suppressed Due to Excessive Length

The main challenges in constructing the simulator involve simulating the
client’s behavior without access to the private input zp;, handling evalua-
tion finalization without this private input, and ensuring consistency with the
ideal functionality during key refresh and server corruptions. To address these
challenges, the simulator employs the following strategies:

1. Evaluation Initialization: Since the simulator lacks knowledge of the
client’s private input .y, it must simulate the client’s initialization phase
in a way that is indistinguishable from the real protocol. To achieve this,
the simulator selects a random scalar a € Z; and computes [p]; = a - [1]4,
effectively mimicking the blinding operation performed in the real protocol,
where [p]1 = 7 - Hi(Zpriv) with a random blinding factor r. This approach
ensures that [p]; remains a uniformly random group element, preserving the
distribution expected by the servers. By doing so, the simulator maintains
consistency in the server’s view, ensuring that the messages it sends are
indistinguishable from those in the real protocol, despite not knowing ;.

2. Evaluation Finalization: In the evaluation finalization phase, the simulator
must determine the PRF key used by potentially dishonest servers to interact
correctly with the ideal functionality. Without knowledge of %y, the simu-
lator reconstructs the public key pk’ from the received messages. It uses the
scalar a from the initialization phase and retrieves the trapdoor y injected in
the random oracle Ha(py) to compute pk’ = a=1 -y~ [u];, where [u]; is
the aggregate response from the servers. If pk’ is not already associated with
a label, it assigns a new label and stores the tuple (label,[1]y, [1]2, pk’). This
allows the simulator to send the FinishEval message to the ideal function-
ality with the correct label, ensuring that the PRF outputs correspond to
those in the real protocol. By accurately simulating this phase, the simulator
maintains the consistency required for the indistinguishability of the two
executions.

3. Random Oracle Queries: The simulator must handle queries to the random
oracles in a manner that preserves consistency between the simulated protocol
and the ideal functionality. It does so by programming the random oracles
and embedding trapdoors when necessary. For example, when a query to
H; (the final hash function) is received, especially from a corrupted client,
the simulator determines the public key pk’ consistent with the computation
of [u]; by using the trapdoors embedded in Hi(zpriy) and Ha(zpup). If pk’
corresponds to the honest key label, the simulator checks whether sufficient
servers were involved in the computation to satisfy the ideal functionality’s
requirements. It programs the random oracle to return the PRF value obtained
from the ideal functionality, ensuring that any evaluations performed by the
adversary result in outputs consistent with those expected in the ideal world.
This careful management of random oracle responses prevents the adversary
from distinguishing between the real and ideal executions based on the
outputs of these oracles.

We demonstrate that any discrepancies between the real and ideal executions
occur with negligible probability, primarily due to rare failure events. These

A Fully-Adaptive Threshold Partially-Oblivious PRF 27

events include situations where the adversary manages to generate valid protocol
messages without sufficient interaction with honest servers or exploits collisions
in the hash functions. We bound the probability of these failure events using the
One-More Gap Diffie-Hellman (OM-B-gapDH) assumption or statistical bounds.
Specifically, we show that if an adversary could cause the simulator to fail with
non-negligible probability, it would imply an ability to solve the OM-B-gapDH
problem, which contradicts the assumed hardness of this problem.

We use our Domain-Isolating Oracle Programming (DIOP) proof technique
and guess the public value zp,,* for which the break happens to inject into that
“domain” the OM-B-gapDH assumption by setting Ha(2pup*) < Targ,. For all
other .5, we inject a trapdoor into Hs so we can simulate everything without
using the Help oracle of the OM-B-gapDH assumption. We also inject challenge
elements from Targ; into H;. By carefully designing the simulator to handle
all possible interactions and ensuring that any other differences between the
simulated and real protocol executions are statistically negligible, we conclude that
our tpOPRF protocol achieves composable security within the UC framework.

Acknowledgments

This work was partially supported by Deutsche Forschungsgemeinschaft as part
of the Research and Training Group 2475 “Cybercrime and Forensic Computing”
(grant number 393541319/GRK2475/1-2019), and by the Smart Networks and
Services Joint Undertaking (SNS JU) under the European Union’s Horizon
Europe research and innovation program in the scope of the CONFIDENTTAL6G
project under Grant Agreement 101096435. The contents of this publication are
the sole responsibility of the authors and do not in any way reflect the views of the
EU. his research was partly funded by SBA Research (SBA-K1 NGC), a COMET
Center within the COMET — Competence Centers for Excellent Technologies
Programme and funded by BMIMI, BMWET, and the federal state of Vienna.

References

[1] Elaine Barker. NIST Special Publication 800-57 Part 1, Revision 5. https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57ptir5.pdf. [Online; accessed 21-January-2025].

[2] C. Baum et al. “PESTO: Proactively Secure Distributed Single Sign-On,
or How to Trust a Hacked Server”. In: 2020 IEEE European Symposium on
Security and Privacy (EuroS&P). Los Alamitos, CA, USA: IEEE Computer
Society, 2020, pp. 587—606. DOI: 10.1109/EuroSP48549.2020.00044.

[3] Daniel Bourdrez et al. The OPAQUE Augmented PAKE Protocol. https:
//datatracker . ietf .org/doc/draft-irtf - cfrg- opaque/. [Online,
accessed 10/02/24].

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://doi.org/10.1109/EuroSP48549.2020.00044
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/

28

[4]

[5]

(6]

7]

8]

191

[10]

[11]

[12]

[13]

Authors Suppressed Due to Excessive Length

Julian Brost et al. “Threshold Password-Hardened Encryption Services”.
In: ACM CCS 2020: 27th Conference on Computer and Communications
Security. Ed. by Jay Ligatti et al. ACM Press, Nov. 2020, pp. 409-424. por:
10.1145/3372297.3417266.

Jan Camenisch, Anja Lehmann, and Gregory Neven. “Optimal Distributed
Password Verification”. In: ACM CCS 2015: 22nd Conference on Com-
puter and Communications Security. Ed. by Indrajit Ray, Ninghui Li, and
Christopher Kruegel. ACM Press, Oct. 2015, pp. 182-194. po1: 10.1145/
2810103.2813722.

Jan Camenisch et al. “iUC: Flexible Universal Composability Made Simple”.
In: Advances in Cryptology — ASIACRYPT 2019, Part III. Ed. by Steven
D. Galbraith and Shiho Moriai. Vol. 11923. Lecture Notes in Computer
Science. Springer, Cham, Dec. 2019, pp. 191-221. por: 10.1007/978-3-
030-34618-8_7.

Ran Canetti. “Universally Composable Security”. In: J. ACM 67.5 (2020),
28:1-28:94. poI1: 10.1145/3402457. URL: https://doi.org/10.1145/
3402457.

Ran Canetti. “Universally Composable Security: A New Paradigm for
Cryptographic Protocols”. In: 42nd Annual Symposium on Foundations of
Computer Science. IEEE Computer Society Press, Oct. 2001, pp. 136-145.
DOI: 10.1109/SFCS.2001.959888.

S. Casacuberta, J. Hesse, and A. Lehmann. “SoK: Oblivious Pseudorandom
Functions”. In: 2022 IEEE 7th European Symposium on Security and Pri-
vacy (EuroS€P). Los Alamitos, CA, USA: IEEE Computer Society, 2022,
pp. 625-646. DOI: 10.1109/EuroSP53844.2022.00045.

Poulami Das, Julia Hesse, and Anja Lehmann. “DPaSE: Distributed
Password-Authenticated Symmetric-Key Encryption, or How to Get Many
Keys from One Password”. In: Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security. New York, NY,
USA: Association for Computing Machinery, 2022, 682-696. DOI1: 10.1145/
3488932.3517389.

Alex Davidson et al. “Privacy Pass: Bypassing Internet Challenges Anony-
mously”. In: Proceedings on Privacy Enhancing Technologies 2018.3 (July
2018), pp. 164-180. pOIL: 10.1515/popets-2018-0026.

Gareth T. Davies et al. “Security Analysis of the WhatsApp End-to-End
Encrypted Backup Protocol”. In: Advances in Cryptology — CRYPTO 2023,
Part IV. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14084.
Lecture Notes in Computer Science. Springer, Cham, Aug. 2023, pp. 330—
361. DOI: 10.1007/978-3-031-38551-3_11.

Alex Escala et al. “An Algebraic Framework for Diffie-Hellman Assump-
tions”. In: Advances in Cryptology — CRYPTO 2013, Part II. Ed. by Ran
Canetti and Juan A. Garay. Vol. 8043. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, Aug. 2013, pp. 129-147. po1: 10.1007/978-
3-642-40084-1_8.

https://doi.org/10.1145/3372297.3417266
https://doi.org/10.1145/2810103.2813722
https://doi.org/10.1145/2810103.2813722
https://doi.org/10.1007/978-3-030-34618-8_7
https://doi.org/10.1007/978-3-030-34618-8_7
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/EuroSP53844.2022.00045
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1007/978-3-031-38551-3_11
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A Fully-Adaptive Threshold Partially-Oblivious PRF 29

Adam Everspaugh et al. “The Pythia PRF Service”. In: USENIX Secu-
rity 2015: 24th USENIX Security Symposium. Ed. by Jaeyeon Jung and
Thorsten Holz. USENIX Association, Aug. 2015, pp. 547-562.

Georg Fuchsbauer, Eike Kiltz, and Julian Loss. “The Algebraic Group
Model and its Applications”. In: Advances in Cryptology — CRYPTO 2018,
Part 1I. Ed. by Hovav Shacham and Alexandra Boldyreva. Vol. 10992.
Lecture Notes in Computer Science. Springer, Cham, Aug. 2018, pp. 33-62.
DOI: 10.1007/978-3-319-96881-0_2.

Google. Google Cloud KMS Documentation: Key rotation. https://cloud.
google . com/kms /docs /key - rotation. [Online; accessed 21-January-
2025).

Yangi Gu et al. “Threshold PAKE with Security Against Compromise
of All Servers”. In: Advances in Cryptology - ASIACRYPT 2024 - 30th
International Conference on the Theory and Application of Cryptology and
Information Security, Kolkata, India, December 9-13, 2024, Proceedings,
Part V. Ed. by Kai-Min Chung and Yu Sasaki. Vol. 15488. Lecture Notes in
Computer Science. Springer, 2024, pp. 66-100. DOI: 10.1007/978-981-96-
0935-2_3. URL: https://doi.org/10.1007/978-981-96-0935-2_3.
Dennis Hofheinz and Victor Shoup. “GNUC: A New Universal Composabil-
ity Framework”. In: Journal of Cryptology 28.3 (July 2015), pp. 423-508.
DOI: 10.1007/s00145-013-9160-y.

Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. “Round-Optimal
Password-Protected Secret Sharing and T-PAKE in the Password-Only
Model”. In: Advances in Cryptology — ASIACRYPT 201/, Part II. Ed. by
Palash Sarkar and Tetsu Iwata. Vol. 8874. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, Dec. 2014, pp. 233-253. DOI: 10.
1007/978-3-662-45608-8_13.

Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. “OPAQUE: An Asymmet-
ric PAKE Protocol Secure Against Pre-computation Attacks”. In: Advances
in Cryptology — EUROCRYPT 2018, Part I11. Ed. by Jesper Buus Nielsen
and Vincent Rijmen. Vol. 10822. Lecture Notes in Computer Science.
Springer, Cham, 2018, pp. 456-486. DOI: 10.1007/978-3-319-78372-
7_15.

Stanislaw Jarecki et al. “Highly-Efficient and Composable Password-Protected
Secret Sharing (Or: How to Protect Your Bitcoin Wallet Online)”. In: 2016
IEEE FEuropean Symposium on Security and Privacy (EuroS€&P). 2016,
pp. 276-291. DOL: 10.1109/EuroSP.2016.30.

Stanislaw Jarecki et al. “TOPPSS: Cost-Minimal Password-Protected Secret
Sharing Based on Threshold OPRF”. In: ACNS 17: 15th International
Conference on Applied Cryptography and Network Security. Ed. by Dieter
Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi. Vol. 10355. Lecture Notes
in Computer Science. Springer, Cham, July 2017, pp. 39-58. DOI: 10.1007/
978-3-319-61204-1_3.

Shuichi Katsumata, Michael Reichle, and Kaoru Takemure. “ Adaptively
Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with

https://doi.org/10.1007/978-3-319-96881-0_2
https://cloud.google.com/kms/docs/key-rotation
https://cloud.google.com/kms/docs/key-rotation
https://doi.org/10.1007/978-981-96-0935-2_3
https://doi.org/10.1007/978-981-96-0935-2_3
https://doi.org/10.1007/978-981-96-0935-2_3
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1109/EuroSP.2016.30
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3

30

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

Authors Suppressed Due to Excessive Length

Rewinding”. In: Advances in Cryptology — CRYPTO 2024, Part VII. Ed. by
Leonid Reyzin and Douglas Stebila. Vol. 14926. Lecture Notes in Computer
Science. Springer, Cham, Aug. 2024, pp. 459-491. pOI: 10.1007/978-3-
031-68394-7_15.

Ralf Kiisters, Max Tuengerthal, and Daniel Rausch. “The IITM Model: A
Simple and Expressive Model for Universal Composability”. In: Journal of
Cryptology 33.4 (Oct. 2020), pp. 1461-1584. por: 10.1007/s00145-020-
09352-1.

Ueli Maurer. “Constructive Cryptography - A Primer (Invited Paper)”. In:
FC 2010: 14th International Conference on Financial Cryptography and
Data Security. Ed. by Radu Sion. Vol. 6052. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, Jan. 2010, p. 1. Do1: 10.1007/978-
3-642-14577-3_1.

OWASP Cheat Sheets Series Team. Cryptographic Storage Cheat Sheet.
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_
Storage_Cheat_Sheet.html. [Online; accessed 12-February-2025].

Rafaél Del Pino et al. “Threshold Raccoon: Practical Threshold Signa-
tures from Standard Lattice Assumptions”. In: Advances in Cryptology
- EUROCRYPT 2024, Part 1I. Ed. by Marc Joye and Gregor Leander.
Vol. 14652. Lecture Notes in Computer Science. Springer, Cham, May 2024,
pp- 219-248. por1: 10.1007/978-3-031-58723-8_8.

Security Standards Council. PCI DSS v4.0.1 (Section 15, 3.7.4 and 3.7.5).
https://docs-prv.pcisecuritystandards.org/PCI20DSS/Standard/
PCI-DSS-v4_0_1.pdf. [Online; accessed 21-January-2025].

Adi Shamir. “How to Share a Secret”. In: Communications of the Association
for Computing Machinery 22.11 (Nov. 1979), pp. 612-613. DOI: 10.1145/
359168.359176.

Jeremy Stieglitz. The curious case of faster AWS KMS symmetric key
rotation. https://aws . amazon . com/blogs/security/the - curious-
case-of-faster-aws-kms-symmetric-key-rotation/. [Online; accessed
12-February-2025].

WhatsApp. Security of End-To-End Encrypted Backups. www.whatsapp.
com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.
pdf. [Online, accessed 10/02/24]. 2021.

Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz. “An Analysis of the
Algebraic Group Model”. In: Advances in Cryptology — ASTACRYPT 2022,
Part IV. Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13794. Lecture
Notes in Computer Science. Springer, Cham, Dec. 2022, pp. 310-322. DOI:
10.1007/978-3-031-22972-5_11.

https://doi.org/10.1007/978-3-031-68394-7_15
https://doi.org/10.1007/978-3-031-68394-7_15
https://doi.org/10.1007/s00145-020-09352-1
https://doi.org/10.1007/s00145-020-09352-1
https://doi.org/10.1007/978-3-642-14577-3_1
https://doi.org/10.1007/978-3-642-14577-3_1
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://doi.org/10.1007/978-3-031-58723-8_8
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0_1.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0_1.pdf
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://aws.amazon.com/blogs/security/the-curious-case-of-faster-aws-kms-symmetric-key-rotation/
https://aws.amazon.com/blogs/security/the-curious-case-of-faster-aws-kms-symmetric-key-rotation/
www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://doi.org/10.1007/978-3-031-22972-5_11

	A Fully-Adaptive ThresholdPartially-Oblivious PRF

