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Abstract

Adaptor signatures extend the functionality of regular signatures through the
computation of pre-signatures on messages for statements of NP relations. Pre-
signatures are publicly verifiable; they simultaneously hide and commit to a sig-
nature of an underlying signature scheme on that message. Anybody possessing a
corresponding witness for the statement can adapt the pre-signature to obtain the
“regular” signature. Adaptor signatures have found numerous applications for con-
ditional payments in blockchain systems, like payment channels (CCS’20, CCS’21),
private coin mixing (CCS’22, SP’23), and oracle-based payments (NDSS’23). In
our work, we revisit the state of the security of adaptor signatures and their con-
structions. In particular, our two main contributions are:

• Security Gaps and Definitions: We review the widely-used security model
of adaptor signatures due to Aumayr et al. (ASIACRYPT’21) and identify
gaps in their definitions that render known protocols for private coin-mixing
and oracle-based payments insecure. We give simple counterexamples of adap-
tor signatures that are secure w.r.t. their definitions but result in insecure
instantiations of these protocols. To fill these gaps, we identify a minimal set
of modular definitions that align with these practical applications.

• Secure Constructions: Despite their popularity, all known constructions
are (1) derived from identification schemes via the Fiat-Shamir transform
in the random oracle model or (2) require modifications to the underlying
signature verification algorithm, thus making the construction useless in the
setting of cryptocurrencies. More concerningly, all known constructions were
proven secure w.r.t. the insufficient definitions of Aumayr et al., leaving us
with no provably secure adaptor signature scheme to use in applications.

Firstly, in this work, we salvage all current applications by proving the secu-
rity of the widely-used Schnorr adaptor signatures under our proposed def-
initions. We then provide several new constructions, including presenting
the first adaptor signature schemes for Camenisch-Lysyanskaya (CL), Boneh-
Boyen-Shacham (BBS+), and Waters signatures, all of which are proven se-
cure in the standard model. Our new constructions rely on a new abstraction
of digital signatures, called dichotomic signatures, which covers the essential
properties we need to build adaptor signatures. Proving the security of all
constructions (including identification-based schemes) relies on a novel non-
black-box proof technique. Both our digital signature abstraction and the
proof technique could be of independent interest to the community.
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1 Introduction

Adaptor signatures allow a signer to compute a verifiable promise w.r.t. some NP state-
ment Y , called a pre-signature. The signer promises that anyone who knows a witness
y for Y can compute a correct signature from the pre-signature and otherwise cannot.
Adaptor signatures are extractable; given a pre-signature and a signature, one can ef-
ficiently extract the witness y. Adaptor signatures have numerous applications in the
blockchain space, such as payment channels [DW15; Mil+19; Eck+20], private coin mix-
ing [Gla+22; Qin+23], and oracle-based payments [Mad+23], among many others.

Security Definitions. Adaptor signatures were initially defined for the one-time fair
exchange of a coin for a witness; now, they serve in various settings that deviate from
this two-party fair exchange as outlined above. Given that the security definitions were
initially formulated exclusively for one-time fair exchange scenarios, the question arises as
to whether the security model has the necessary strength for new applications. Recently,
Dai et al. [DOY22] revisited the security model and proposed stronger definitions. The
authors justify the need for one of their definitions with a contrived counter-example
identifying a definitional gap. Unfortunately, this definitional gap remains purely theo-
retical and is not applicable to novel applications, which brings us back to our original
question:

- Which definitions are both necessary and sufficient for real adaptor signature appli-
cations?

We re-examine the security of adaptor signatures in the context of the new applications
and identify multiple vulnerabilities that lead to specific attacks within each application.
These attacks have two implications. First, the security proofs of nearly all recent appli-
cations have gaps. We illustrate these gaps by creating artificial schemes that maintain
security according to the original definitions [Erw+21; Aum+21]. However, when our
scheme is used in private coin mixing [Gla+22; Qin+23] or the oracle-based payments
protocol [Mad+23], it leads to insecure protocols. Our attacks confirm the necessity for
stronger definitions as previously suggested by Dai et al. [DOY22]. However, our attacks
also reveal that a very basic property is missing to securely realize these applications.
We close this gap by introducing pre-verify soundness, a property that ensures that the
pre-verification algorithm satisfies (computational) soundness w.r.t. the NP relation Rel.
Second, our attacks expose weaknesses in the original security proofs within all practical
applications of adaptor signatures, such as private coin mixing [Gla+22; Qin+23] and
oracle-based payment [Mad+23] protocols. However, specific implementations that rely
on the Schnorr adaptor signature within the random oracle framework remain unaffected
(we prove the security of Schnorr adaptor signatures w.r.t. the stronger definitions within
our general framework). This observation underscores that practitioners, when designing
innovative applications, prioritize a distinct set of security properties that may not be
generically covered by current adaptor signature formalization. Given the rapid develop-
ment and integration of adaptor signatures in the blockchain domain, there is an urgent
need to bridge the gap between intuitively understood security properties and the under-
lying formal guarantees. To address this, we strive to narrow this gap by extracting a
minimal set of modular definitions that align with these practical applications.
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Constructions. Adaptor signatures are always defined w.r.t. some underlying fixed
signature scheme. The underlying signature scheme is typically hardcoded in some
blockchain application prohibiting any modification to the scheme itself, especially not
the verification algorithm. In other words, any adaptor signature scheme must end up
issuing signatures that are verified under the original verification algorithm of the sig-
nature scheme. This practical limitation makes the construction of adaptor signatures
challenging. It leads to the fact that all known constructions are based on identification
schemes that are converted to a signature scheme using the Fiat-Shamir transformation
in the Random oracle model [BR93; EEE20; TMM20; Aum+21; Erw+21; Alb+22]. The
only exception is the work of Aumayr et al. [Aum+21], where they construct an adap-
tor signature scheme for ECDSA based on concepts from [Mal+19]. Unfortunately, the
security of all known schemes is proven secure only in the model proposed by Aumayr
et al. [Aum+21], which we show is insufficient for novel applications. This leads to an un-
satisfactory situation in which practitioners use unproven constructions, and all possible
candidate schemes achieve security only within the random oracle model.

Relying on the random oracle model is undesirable for at least two reasons. First, the
random oracle model is not sound, as demonstrated by Canetti, Goldreich, and Halevi
[CGH04]. Consequently, the pursuit of constructions within the standard model is crucial
to instill greater confidence in the existence of this cryptographic primitive in general.
Second, using the Fiat-Shamir transformation causes the signature algorithm not to work
well in all (practical) applications, such as anonymous credentials, which hinders further
adaptation of this primitive. The challenge here is the application of the hash function,
which often cannot be (efficiently) integrated into complicated zero-knowledge proofs.
Therefore, we put forward the following questions:

- Does the Schnorr adaptor signature scheme satisfy the stronger security notions?

- Given a standard model signature scheme Σ, can we construct a standard model
adaptor signature scheme AS based on Σ without modifying Σ?

We answer both questions in the affirmative. In particular, we present the first adaptor
signatures that do not rely on the random oracle heuristic. Instead of proving security for
all schemes from scratch, we develop a general framework, referred to as dichotomic adap-
tor signatures, that covers all known ID-based adaptor signatures and several standard
model signature schemes, such as CL signatures [CL03], the strongly unforgeable Waters
signature scheme [BSW06], and the BBS+ [BBS04] signature scheme, which is currently
being standardized. When instantiating our framework with the strongly unforgeable
Waters signature scheme [BSW06], we obtain the first adaptor signature scheme that is
secure under the CDH assumption, one of the weakest cryptographic assumptions used
in practice. The security proof includes a novel non-black-box proof technique called
transparent reduction, which may also be of independent interest to the community.

1.1 Our Contribution

Our contribution can be summarized as follows.

• We show that the initial formal security model for adaptor signatures leads to inse-
cure instances when adaptor signatures are applied in real-world scenarios. To ensure
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the safe and reliable use of adaptor signatures in practical applications, we extract
and simplify the core concepts of the stronger definitions by Dai, Okamoto, and Ya-
mamoto [DOY22] and introduce a missing security property required by the real-world
applications, called pre-verify soundness.

• We present the first adaptor signature schemes in the standard model without modify-
ing the signature verification algorithms of the underlying signature schemes; a crucial
requirement for practical applications which rely on standardized primitives. Con-
cretely, we design adaptor signature schemes based on the signature schemes of Ca-
menisch and Lysyanskaya (CL) [CL03], Boneh, Boyen, and Shacham (BBS+) [BBS04]
that are widely used in modern digital systems in the context of Anonymous Creden-
tials. Furthermore, we also present an adaptor signature scheme based on the strongly
unforgeable Waters signature (Waters+) [BSW06].

• Our third contribution is conceptual. We analyze the algebraic properties of the un-
derlying signature schemes of all known adaptor signatures to find a common blueprint
that can then be instantiated in the standard model. We call our resulting abstraction
dichotomic signatures and show that it covers all known schemes (that lead to current
adaptor constructions) as well as the CL, BBS+, and Waters+ signature schemes. Our
adaptor signature constructions are highly efficient and add little to no overhead over
the algorithms of the underlying signature schemes.

• On a technical level, we present a novel non-black-box proof technique called trans-
parent reductions, which exploits the code of a reduction from the signature scheme
to the underlying hard problem in a non-black-box way. This technique allows us to
formally analyze the security of our adaptor signature schemes based on dichotomic
signatures in the standard model, i.e., not relying on the ROM. Since CL, BBS+, and
Waters+ are signature schemes in the standard model, this gives us the first adaptor
signature schemes in the standard model (provided that the signature verification al-
gorithms are not modified). In addition, we show that transparent reductions can also
be used to prove the security of Schnorr adaptor signatures. We believe that trans-
parent reductions are indeed necessary to prove standard model adaptor signatures
secure: Without the powerful toolset of the random oracle model (namely program-
ming and witness extractable NIZKs), it seems impossible to simulate a pre-signature
oracle without violating the strong unforgeability of the underlying signature scheme.

1.2 Related Work

Adaptor signatures made their debut in the work of Poelstra [Poe17] and were later for-
mally defined by Aumayr et al. [Aum+21]. They have versatile applications, spanning
various domains such as Payment Channel Networks (PCNs) [Mal+19; DW15; Mil+19;
Eck+20], private coin mixing [Gla+22; Qin+23], and Oracle-based payments [Mad+23],
among others. In the realm of post-quantum cryptography, Esgin et al. [EEE20] and Tairi
et al. [TMM20] contributed secure adaptor signatures within the random oracle model.
The construction of Esgin et al., a post-quantum adaptation of Schnorr, falls under the
category of dichotomic signatures. The concept of adaptor schemes for a class of signature
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schemes, particularly those secure in the random oracle model, saw its initial generaliza-
tion by Erwig et al. [Erw+21]. Our abstract representation of dichotomic signatures
encompasses all known schemes and includes innovative standard model constructions.
Verifiably encrypted signatures, akin to adaptor signatures, differ in their inability to
support the public adaptation of the signature [Bon+03; RS09] or the extraction of the
witness from the signature and ciphertext.

A recent contribution by Dai et al. [DOY22] introduced new definitions for adaptor
signatures and an adaptor signature scheme that any unforgeable signature scheme can
instantiate. While we believe the stronger security definitions to be adequate, we extract
a necessary, simplified core of these definitions. Moreover, their standard model adaptor
signature construction necessitates modifications to the underlying signature verification
algorithm, circumventing a fundamental challenge in adaptor signature design. This
adjustment at the application layer has ramifications, as it compromises the fungibility
of blockchain transactions and renders them incompatible with many existing blockchain
systems.

Tairi, Moreno-Sanchez, and Schneidewind took a distinct approach in their quest to
establish robust security definitions for adaptor signatures [TMSS23]. They formulated
security notions for adaptor signatures within the Universal Composability (UC) frame-
work.

2 Technical Overview

In this section, we give an overview of our contributions towards improving both the
foundations and the practice of adaptor signatures. Towards this, we begin with a de-
scription of the adaptor signature functionality in Section 2.1 and its formalization for
the case of payment channels by Aumayr et al. [Aum+21]. Then, in Section 2.2, we give
an overview of the gaps we identified in the existing security definitions of [Aum+21]
along with explicit attacks that break the security of three higher-level protocols that use
adaptor signatures. With these gaps in mind, we advocate the use of the recently intro-
duced security definitions by Dai et al. [DOY22] for adaptor signatures. In Section 2.3,
we switch focus and present our new general framework for constructing secure adaptor
signatures. Finally, in Section 2.4, we discuss several instantiations of our framework, in-
cluding presenting the first adaptor signatures for several signatures schemes, including
Boneh-Boyen-Shacham (BBS+) [BBS04]. These instantiations result in the first adaptor
signatures in the standard model.

2.1 Adaptor Signatures and Payment Channels

We begin by describing the adaptor signature scheme functionality, which was introduced
by Poelstra [Poe17]. Informally, an adaptor signature scheme models a blockchain-based
protocol for fairly exchanging a digital signature (e.g., on a transaction) and a witness
for an NP statement. More specifically, the adaptor signature scheme consists of four
algorithms (pSign, pVrfy,Adapt,Extract) which are used as follows for the fair exchange:
a signer Alice uses the pre-signing algorithm pSign to compute a pre-signature σ̃ on a
transaction message m w.r.t. an NP statement Y held by Bob. Then, running the adapt
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algorithm Adapt on σ̃ and its witness y, Bob computes a valid signature σ on the message
m under Alice’s signing key. To redeem the payment, Bob posts σ on the blockchain;
this allows Alice to learn the witness y by running the extract algorithm Extract on the
(σ̃, σ) pair. Thus, Alice obtains the witness for the statement Y , while Bob obtains the
signature on the transaction message m.

The work of Aumayr et al. [Aum+21] showed a mechanism to bootstrap the above
fair-exchange protocol to enable payment channels, a scalability solution for blockchain-
based cryptocurrency payments. To formally capture security for this fair exchange,
they proposed three essential security properties for adaptor signatures: unforgeability,
pre-signature adaptability, and witness-extractability. For the sake of this overview, we
will only focus on the property of witness-extractability, which is crucial for fairness.
Informally, witness extractability ensures that Alice can successfully extract Bob’s witness
from every valid signature σ given by Bob. Without witness-extractability, there may
exist a valid signature σ, which is sufficient for Bob to redeem the payment, but knowing
σ may not allow Alice to learn the witness, thereby violating fairness. To formalize this,
Aumayr et al. consider the following game and, for security, require that no efficient
adversarial Bob wins the game with non-negligible probability:

- The challenger provides a signing and a pre-signing oracle to Bob.

- Eventually, Bob outputs as challenges a message m∗ and a statement Y ∗.

- The challenger computes a single pre-signature σ̃ on (m∗, Y ∗) and forwards σ̃ to
Bob, who again has access to the oracles and eventually outputs a signature forgery
σ∗.

- Bob wins if he never asks any of the oracles on the message m∗, and the forgery
does not extract with σ̃, i.e., (Y ∗,Extract(σ̃, σ∗)) /∈ Rel.

This formalization of witness extractability, where the adversary only has access to ex-
actly one pre-signature on the challenge message m∗, is meaningful for the payment
channel setup, where the messages on which the pre-signatures are computed on are
unique transactions. Therefore, the adversary will never learn two pre-signatures on the
same message, as each transaction is different and no transaction can be executed twice.

2.2 Gaps in Adaptor Signature Definitions

Our starting point is the observation that the above three properties are specifically
tailored to the setting of payment channels. For example, for witness-extractability, it
is sufficient that every valid signature on a message m computed by Bob is extractable
when Bob has learned exactly one pre-signature on m before. Therefore, a Bob capable
of generating a non-extractable signature after learning two pre-signatures on the same
message m does not hurt payment channels. However, as we show next, such a Bob
not only exists but also voids the security for adaptor-signature-based protocols beyond
payment channels.

Beyond payment channels, adaptor signatures have found more broad applications,
such as oracle-based payments [Mad+23], and (blind) coin-mixing services [Gla+22;
Qin+23]. Despite being used in much broader contexts, the security is argued relying on
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the formalization of adaptor signatures tailored towards the case of payment channels.
This mismatch allows us to break the security of all the above three protocols. In par-
ticular, for each of these protocols, we find adaptor signature schemes that (a) satisfy
the security definitions in [Aum+21], but (b) render the higher-level protocol insecure.
Henceforth, we refer to such adaptor signature schemes as counter-examples.

Counter-examples. The key idea towards designing counter-examples relies on ex-
ploiting the differences between the considered protocol’s setting and that of payment
channels. For example, for the case of oracle-based payments, we design an adaptor-
signature with leaky pre-signatures : To build these, we use an adaptor signature scheme
that is secure w.r.t. the definitions provided by [Aum+21]. To make a pre-signature on
a message m leaky, we add a two-out-of-two share of a signature σ on m to the pre-
signature. When a party only learns a single pre-signature, this two-out-of-two hides
the additional signature σ. However, if one learns a second pre-signature on the same
message, the combination of both shares can be used to extract σ. We show later in
this overview that if instantiated with adaptor signatures with leaky pre-signatures, the
security of oracle-based payments cannot be argued if a single transaction is pre-signed
twice. However, computing a second pre-signature is a desirable goal for this application.

Similarly, for coin-mixing protocols [Gla+22] and blind-coin-mixing protocols [Qin+23],
we design adaptor signature schemes where pre-signatures satisfy properties of malleabil-
ity and unadaptibility. We postpone the description of these properties and the con-
structions to Section 4. We provide a summary of the protocols affected by our attacks
in Figure 1 and continue with explaining how the class of leaky pre-signatures breaks the
one-wayness of oracle-based payments.

Protocol Pre-Signatures in Our Counter-Examples
Coin Mixing [Gla+22] Malleability (Section 4.1)
Oracle-Based Payments [Mad+23] Leaky (Section 4.3)
Blind Hubs [Qin+23] Unadaptability (Section 4.2)

Figure 1: An overview of which protocol is affected by which gap.

Insecurity of Oracle-Based Payments. Oracle-based payments allow two mistrust-
ing parties, Alice and Bob, to make payments conditional on the outcome of some real-
world event [Mad+23]. To do this, Alice sends verifiably encrypted signatures on trans-
actions to Bob. These encrypted signatures can be decrypted by Bob when a threshold
number of semi-trusted oracles sign predetermined messages. For example, if Alice wants
to pay Bob 5 coins if the weather is rainy on a given date, she encrypts a signature on
a transaction of 5 coins to Bob. If Bob receives the testimony of at least three weather
oracles that it rained on the given date, he can decrypt the signature and redeem the
payment. Adaptor signatures are used as the main building block for oracle-based pay-
ments. The encryption of a signature is a pre-signature that can be verified using the
pre-verify algorithm. The pre-signature is generated w.r.t. a statement Y whose witness
y is secretly shared among the oracles. When an oracle testifies for an event, it reveals its
share of the witness y. We can see that it is natural for oracle-based payments to create
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multiple pre-signatures on the same message: If Alice wants to pay Bob 5 coins when it
rains or when it snows, she creates a transaction for 5 coins and encrypts it once for rain
and once for snow.

As we have already described, witness extractability only provides security guaran-
tees if an adversary learns exactly one pre-signature on a challenge message m∗, since this
correctly models the payment channels. Therefore, we can build an adaptor signature
scheme in which any pair of pre-signatures on the same message reveals a full signature,
even if the pre-signatures are not adapted. Such an adaptor signature scheme remains
witness extractable (according to the definition from [Aum+21]) since the adversary, who
still only learns one pre-signature on the challenge message, cannot obtain the additional
valid signature on the challenge message. However, such an adaptor signature scheme
defeats one-wayness, which is the most important security property of oracle-based pay-
ments: One-wayness guarantees that an encrypted payment for a threshold of t oracles
(a pre-signature on a message m) can only be redeemed (learn a signature on m) if a
malicious user provides the testimony of at least t oracles. Leaky pre-signatures break
one-wayness since a malicious Bob asks Alice for two encrypted payments on the same
transaction message m and learns a valid signature on m from this pair. Thus, Bob can
spend transaction m without any testimony.

Stronger Definitions. Each of our counterexamples (c.f. Section 4) shows that the
mentioned gaps in the original definitions of adaptor signatures are not theoretical but
lead to security flaws in the broad applications of adaptor signatures. Thus, we try to
find sufficiently strong definitions of adaptor signatures. The work of Dai et al. [DOY22]
provides an important contribution to the security of adaptor signatures, as they model
security without an implicit application of the primitive to payment channels. They also
provide a separating counter-example between the new and the old definitions. However,
the counter-example does not break the security of any published application that uses
adaptor signatures. Therefore, it is unclear whether the new definitions are only theoret-
ically stronger or if they indeed fix the gaps in the current adaptor security definitions.
In contrast, we show that the gaps between the old and the new definitions are indeed
practical, as all our explicit attacks are based on counter-examples that are secure w.r.t.
the old definitions but insecure w.r.t. the new ones. The definitions of Dai et al. include
extractability, unique extractability, and unlinkability. While these definitions cover some
applications, we observe in Section 4.2, that there is one important definition missing,
which we formalize as pre-verify soundness. Looking ahead, we will show in Section 5 that
the three definitions of Dai et al. alongside pre-verify soundness are sufficient for current
adaptor signature applications and we will stick to them: For example, if an adaptor
signature scheme is extractable, then there are no leaky pre-signatures. The reason is
that extractability allows an adversary to see multiple pre-signatures on the challenge
message and thus allows an adversary to extract the additional provided information.
We recite the stronger definitions and show how each counterexample is insecure w.r.t.
the stronger security definitions in Section 5.

A Perspective. Dai et al. [DOY22] presented a contrived counterexample scheme to
demonstrate the strength of their definitions. Since these counterexamples are not appli-
cable to the practical applications of adaptor signatures, the cryptographic community
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continued to use the definitions of Aumayr et al. even after the work of Dai et al. was
published, as evidenced by these publications [Gla+22; Qin+23]. In contrast, our (artifi-
cial) counterexamples are applicable to the practical applications of adaptor signatures.
Therefore, we show that the community expects stronger security properties in their
applications that are not currently provided.

2.3 A Framework for Constructing Adaptor Signatures

We now focus on our second main contribution, which is a new framework for constructing
adaptor signatures. Currently, adaptor signatures are only known for ID-based signature
schemes. Two significant challenges with ID-based adaptors are: (a) their security was
proven under the definitions in [Aum+21] which, as demonstrated earlier, are insuffi-
cient beyond payment channels, (b) the only known approach to proving the security
of ID-based signatures requires idealized models like the random oracle model. More
concerningly, these security proofs use the “full” power of the random oracle model (i.e.,
programmability), and this is also inherited by the security proofs of the correspond-
ing adaptor signatures. Whether the reliance on (the full power of) idealized models is
necessary for proving security is a well-motivated fundamental question throughout cryp-
tography. While the class of ID-based signatures is widely used in cryptocurrencies, there
are several non-ID-based signature schemes like BBS+, Waters, and CL that boast desir-
able properties. Enabling adaptor signatures for them is interesting from both theoretical
and practical perspectives.

Dichotomic Signatures. Towards providing a general framework that can capture
several algebraic signature schemes, we identify three natural algebraic properties of sig-
nature schemes. We refer to the class of signatures as dichotomic signatures. These prop-
erties will allow us to build adaptor signatures for these signature schemes. A dichotomic
signature scheme Σ = (KGen, Sign,Vrfy) is a randomized signature scheme equipped with
an injective one-way function OWF : DR → DR′ , where DR and DR′ are randomness spaces
mapping Σ’s randomness such that the following properties are satisfied:

• Decomposability: there exists efficiently computable randomized algorithms Σ1,Σ2

such that for every signing key sk, message m, and randomness r, the signature
σ = Sign(sk,m; r) decomposes into a tuple (σ1, σ2) where σ1 (resp., σ2) uses OWF(r)
(resp., r) as the random tape. That is,

σ1 = Σ1(sk,m;OWF(r)); σ2 = Σ2(sk,m; r) .

• Homomorphism: Σ2 admits an additive homomorphism w.r.t. its randomness com-
ponent. That is, for every signing key sk, message m and randomness r, y ∈ DR,

Σ2(sk,m; r + y) = Σ2(sk,m; r) + y .

• Verifiability: a signature (σ1, σ2) can be verified by just checking an efficient relation
between σ1 and OWF(σ2). This is captured by the existence of an efficient algorithm
Vrfy′ that satisfies

Vrfy(vk,m, (σ1, σ2)) = Vrfy′(vk,m, σ1,OWF(σ2)) ,
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for every verification key vk, and all messages m.

These properties are natural for algebraic signature schemes, and in fact, the abstraction
of dichotomic signatures is quite expressive: In Section 6 we show several known schemes
relying on different algebraic structures are dichotomic. Examples include the prime-
order group based Schnorr signatures [Sch91], the pairing-based Boneh-Boyen-Shacham
(BBS+) [BBS04], the RSA-based Camenisch-Lysyanskaya (CL) [CL03], the class of par-
titioned signatures [BSW06], and the CDH-based strongly unforgeable Waters signature
scheme (Waters+) [BSW06].

Adaptor Signatures for Dichotomic Signatures. We then explore how the abstrac-
tion of dichotomic signatures contributes to the development of an adaptor signature for
the hard relation Rel = {(Y, y) : Y = OWF(y)}. For simplicity, we omit the values sk and
m from the function descriptions and describe only the random values used.

• To pre-sign, a message m w.r.t. a statement Y , and a signing key sk, we compute
Σ2 using randomness r but compute Σ1 using a combined randomness OWF(r) · Y .
That is, a pre-signature σ̃ = (σ̃1, σ̃2) has the form

σ̃1 = Σ1(OWF(r) · Y ); σ̃2 = Σ2(r).

• To adapt a pre-signature σ̃ := (σ̃1, σ̃2) with witness y, we compute σ := (σ1, σ2),
where σ1 = σ̃1, and σ2 = σ̃2 + y. Note that by the homomorphism property of Σ2,
σ is a valid signature on m under the randomness r + y.

• To extract from a pre-signature σ̃ = (σ̃1, σ̃2) and a corresponding adapted signature
σ = (σ1, σ2), we compute σ2 − σ̃2 = y. The correctness of y follows since σ̃ was
adapted using a valid witness y by computing σ2 = σ̃2 + y.

• For convenience’s sake, we omit the pre-verification process and direct the reader
to Construction 1 for a more elaborate discussion.

We refer to these adaptor signatures as dichotomic adaptor signatures. We now proceed
to discuss the security proof.

Proving Security. Ideally, to prove the unforgeability security of adaptor signatures,
we would like to reduce it to the unforgeability of the underlying dichotomic signature
scheme. Any such reduction would need to simulate the signing as well as the pre-
signing oracle for an adaptor signature adversary, while only having access to the signing
oracle in the unforgeability game of the dichotomic signature scheme. However, it is
not clear whether such a task is feasible. To elaborate, consider the following natural
strategy to simulate the pre-signing oracle that takes as input a private key sk and an
adversarially chosen message m and statement Y . To compute a pre-signature on this
pair, the reduction may query its signing oracle to learn a signature σ on m. Note that
this signature σ is a tuple (σ1, σ2) where σ1 = Σ1(OWF(r)), and σ2 = Σ2(r) (we again
omit the values sk, and m). For this tuple, r is the random coins chosen by the signing
oracle, which is kept secret from the reduction. If the reduction had access to the witness
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y for Y , then it can easily turn σ into a valid pre-signature by computing σ̃ := (σ1, σ2−y).
However, since Y is adversarially chosen and from a hard relation, it seems unlikely that
the reduction knows the witness. In other words, it seems that the reduction must break
the hard relation in order to simulate the pre-sign oracle.

To overcome this challenge, the most common approach adopted in known security
proofs for adaptor signature schemes is to rely on the programmability of the random
oracle, which we want to avoid. Another approach is to modify the hard relation to
now contain the tuple (Y, π) as the statement where π is a NIZK proof-of-knowledge
that certifies knowledge of the witness y. Then, the reduction can extract the witness y
using the proof-of-knowledge extractor. However, NIZK proof-of-knowledge themselves
either require a random oracle model [Fis05] or a trusted-setup [BFM88], which should
be avoided in a decentralized setting like ours.

Transparent Reductions. Our key idea to overcome this challenge without relying on
idealized models is to open up the reduction that bases the unforgeability of the under-
lying dichotomic signature scheme to some (possibly interactive) hardness assumption;
henceforth called the unforgeability reduction. We observe that if the unforgeability re-
duction satisfies certain structural properties, then we can use its code in a non-black-box
way to devise a reduction that bases the security of the adaptor signatures directly on the
hardness assumption. Towards this, we introduce the notion of transparent reductions1

which essentially capture the properties required from the unforgeability reductions.
More specifically, transparent reductions disclose three different algorithms as shown

in Fig. 2. A simulated key-generation algorithm, a simulated signing, and a break algo-
rithm that performs the functions as the names suggest: simulate key generation, simulate
the signing oracle, and compute the solution for the hard problem, respectively. The ad-
versary ASign that breaks the unforgeability of the signature scheme receives as input the
public output of the simulated key-generation algorithm and has access to the simulated
signing algorithm as an oracle. When ASign eventually outputs a valid forgery for the
unforgeability game, the break algorithm is used to convert this forgery into a solution
for the instance of the hard problem.

For the first step of our proof strategy, we reuse the code of these interfaces in a non-
black-box way to provide a signing, key-generation, and break algorithm to the adversary
AAS of the security of the adaptor signature scheme. In the second step, we have to sim-
ulate pre-signatures for AAS, which we do using a property of transparent reductions we
call simulatability. Simulatability guarantees that having as input the simulated signing
key simsk, a message m, and a statement Y , the transparent reduction can compute a
simulated pre-signature σ̃ that looks indistinguishable from an honestly computed pre-
signature. Since computing a signature and massaging it to a pre-signature does not
seem feasible as outlined above, the reduction can use the power of the simulated sign-
ing key to directly compute a simulated pre-signature w.r.t. m and Y . With this direct
computation, the reduction does not need to break either the hardness of the relation or
the unforgeability of the signature scheme. Using the power of simulatable transparent
reductions, a challenger can provide all needed oracles to an adversary without relying
on the random oracle model. We show in Section 8, that these simulated oracles lead to

1We call these reductions transparent since we can “see-through” the reduction and use its code in a
non-black-box way.
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Figure 2: Visualization of a transparent reduction that reduces unforgeability to a non-
interactive hard problem. The instance is a random instance of the non-interactive hard
problem.

a security reduction that breaks the hardness of an underlying hard problem whenever
an adversary wins the extractability experiment. This security reduction allows us to
obtain the first adaptor signatures in the standard model, which are based on dichotomic
adaptor signatures in the standard model. Besides from finding adaptor signatures in
the standard model, transparent reductions allow us to prove the security for adaptor
signature schemes based on a variety of assumptions using a single construction: We find
dichotomic adaptor signatures based on strong RSA, pairings, CDH, and many more (c.f.
Section 8).

We believe that transparent reductions are meaningful apart from proving the secu-
rity of dichotomic adaptor signature schemes due to the following two reasons. First,
whenever a primitive adds functionality to a signature scheme (e.g., verifiable encryption
of signatures (VES)), it is not a priori clear whether the security of the new primitive can
be reduced to the unforgeability of the signature scheme. In such a case, transparent re-
ductions can bootstrap the proving process by removing redundancy: Instead of reducing
the hardness of the primitive to the underlying problem, which requires simulating keys,
a signing oracle, and providing a break algorithm, using a transparent reduction leverages
the algorithms of the already existing reduction from the unforgeability of the signature
scheme to the hard problem. Second, transparent reductions for signature schemes open a
much broader field for transparent reductions for arbitrary cryptographic primitives, like
encryption schemes or message authentication codes. Considering these possible applica-
tions, we believe that transparent reductions have future use for any scenario in which a
non-black-box reduction removes redundancy from proofs.

Although our proof technique that relies on the new notion of transparent reductions
is undoubtedly complex, it streamlines the verification process for subsequent construc-
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tions. That is, we need to check if only a few properties hold for the signature schemes’
security reduction instead of reducing the security of the final adaptor construction to the
underlying hard problem from scratch. Our work has done the bulk of the proof work.
What is left to find secure adaptor signatures for a given signature scheme Σ is checking if
the signature scheme is dichotomic and if there exists a simulatable transparent reduction
from the unforgeability of Σ to the hardness of an underlying hard problem. In practice,
many algebraic signature schemes are dichotomic and have a simulatable transparent
reduction, as we show in Section 8.

2.4 New Instantiations of Secure Adaptor Signatures

All currently known adaptor signatures rely on the power of the random oracle model to
achieve security. Furthermore, the only known security proof holds w.r.t. the security
model provided by Aumayr et al. [Aum+21], that turns out to be insufficient for the
novel applications as we show in Section 4. And beyond ID-based signature schemes,
it is not clear whether we can generically find adaptor signatures for a given signature
scheme. We address these issues by providing a general framework for building adaptor
signatures that leads to secure instances w.r.t. our definitions in the standard model.

Adaptor signatures in the standard model are desirable since the goal of modern
cryptography is to use as few and as weak assumptions as possible. Furthermore, many
standardized signatures that are used in a wide variety of applications are in the standard
model. A famous example is the Boneh-Boyen-Shacham (BBS+) signature scheme [BBS04].
The BBS+ signature scheme is the basis for anonymous credentials (AC) and several other
privacy-preserving protocols [BL09; CDL16a; ASM06; Tsa+07], and is also standardized
and deployed in many real-world systems [Loo+23; Hyp; Fin]. Our work shows how to
build adaptor signatures for BBS+, thereby connecting the fairness properties of adaptor
signatures with the privacy-preserving properties of BBS+.

Besides BBS+, we also show how to find adaptor signatures for many existent strongly
unforgeable signature schemes Σ with two easy checks: First, one has to check if Σ is
dichotomic, and second, if the security reduction R from the SUF-CMA security of Σ
to an underlying hard problem is transparent and simulatable. We identify that the
signature schemes Camenisch-Lysyanskaya (CL) [CL03], the class of partitioned signa-
tures [BSW06], and the strongly unforgeable Waters signature (Waters+) [BSW06] are
all dichotomic and have simulatable transparent reductions. Hence, we can build adaptor
signatures for these signature schemes and find the first three secure adaptor signatures
in the standard model. The security of these adaptor signatures is based on well-known
(mild) assumptions, such as the CDH assumption or the strong RSA assumption, rather
than the programmability of a heuristic model.

Furthermore, we show that all existent ID-based adaptor signature schemes also align
with our framework (c.f. Section 8.5). Since our framework works generically, we do not
have to prove the security of each of our new instantiations separately. This means that
the strong security definitions for adaptor signatures, as discussed in Section 5, carry
over to any dichotomic signature scheme with a simulatable transparent reduction. Since
ID-based signatures are dichotomic and have a simulatable transparent reduction, our
framework also implies the security of Schnorr adaptor signatures w.r.t. to the stronger
security definitions of Dai et al.. This renders the current implementations for protocols
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based on Schnorr adaptor signatures secure.

Organization. This paper is organized as follows: We defer the basic preliminaries
to Section 3, which includes the security definitions of adaptor signatures of Aumyar et al.
[Aum+21]. In Section 4, we describe the gaps we identify, including presenting counter-
example schemes, and discuss the insecure instantiations of several applications. Then,
in Section 5, we propose stronger security definitions for adaptor signatures. We define
our abstraction of dichotomic signatures in Section 6 and formalize transparent reductions
in Section 7. Then, we discuss our secure dichotomic adaptor signature constructions and
show how to build adaptor signatures for BBS+ Waters+, CL+, and Schnorr signatures
in Section 8.

3 Preliminaries

By x ←$ X, we denote the uniform sampling of x from the set X, and λ represents the
security parameter. By y ← A(x; r) we denote a probabilistic polynomial time (PPT)
algorithm A that on input x and randomness r, outputs y. When A is a deterministic
polynomial time (DPT) algorithm, we use the notation x := A(y). We call a function
ν : N→ R negligible in n if for every k ∈ N, there exists n0 ∈ N s.t. for every n ≥ n0 it
holds that |ν(n)| ≤ n−k. We use the function assert to check if a condition holds. The
function call assert condition aborts the game in which it is called, if condition evaluates
to false.

3.1 Homomorphic Quasi-Injective One-Way Functions

A one-way function OWF : DD → DS is a function that is computable in polynomial-
time, but given a value Y ∈ DS that is generated via y ←$ DD;Y := OWF(y) it is
computationally hard to find a pre-image y′ such that OWF(y′) = Y .

Definition 1 (One-way function). The function OWF : DD → DS is one-way, if:

Computability Y := OWF(y). There exists an efficient algorithm that takes as an ele-
ment y ∈ DD and computes OWF(y) = Y .

One-wayness. For any PPT adversary A, any randomly chosen value y ← DD with
OWF(y) = Y , the probability

Pr[OWF(y′) = Y |y′ ← A(Y )]

is negligible in λ.

We call OWF homomorphic if it carries over the algebraic structure from the domain
to the support.

Definition 2 (Homomorphic Function). Let DD be an additive group and DS be a multi-
plicative group. A function OWF : DD → DS is homomorphic, if for all a, b ∈ D, it holds
that OWF(a+ b) = OWF(a) · OWF(b).
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We choose additive and multiplicative groups for better readability. The definition
naturally carries over to groups with arbitrary operators.

If we want the pre-image of a value Y = OWF(y) to be unique (with overwhelming
probability), we assume OWF to be quasi-injective.

Definition 3 (Quasi-Injective Function). A function OWF : DD → DS is quasi-injective,
if from OWF(a) = OWF(b) it follows, that a = b with overwhelming probability.

3.2 Hard Relations

A relation Rel is a mapping defined as Rel : DS ×DW → {0, 1} where DS is the space of
statements and DW is the space of witnesses. Let Y ∈ DS be a statement and y ∈ DW

be a witness. Rel maps (Y, y) to 1 if and only if y is a witness for the statement Y . The
relation is hard if, with only the statement Y given, it is computationally infeasible to
compute a witness y such that the relation is satisfied. For practical reasons, verifying the
validity of a witness/statement pair and sampling instances (Y, y) of the relation should
be computationally easy. We recall the notion of hard relations in ??. We often build
hard relations from one-way functions that we formalize as follows:

Definition 4 (Canonical Hard Relation). Let OWF : DR → DR′ be a one-way function
and Rel : DR′×DR → {0, 1} be a hard relation that is defined via Rel(Y, y) = 1 if and only
if Y = OWF(y). We call this relation a canonical hard relation for the function OWF
and denote it via RelOWF.

Hard Relations With Auxiliary Information. We generalize the notion of hard
relations to hard relations with auxiliary information. Our definition of a hard relation
with auxiliary information, denoted by Relaux, is based on an underlying hard relation
Rel′ and an underlying signature scheme Σ. Given a statement-witness pair (Y, y) ∈ Rel′,
the auxiliary information aux can be computed using the algorithm AuxGen on input the
witness y. We define private and public decidability to determine if a pair (Y, aux) is
well formed. Even with this auxiliary information and the signing key sk, for a statement
Yaux := (Y, aux) of the relation with auxiliary information Relaux, it remains hard to
compute a witness y, such that Rel′(Y, y) = 1.

Definition 5. Let Rel′ ⊆ DS×DW be a hard relation with statement/witness pairs (Y, y) ∈
DS×DW and Σ = (KGen, Sign,Vrfy) be a signature scheme. Let Relaux : Daux×DS → {0, 1}
be an efficiently computable relation. We say that the relation Rel ⊆ DS ×Daux ×DW is
a hard relation with auxiliary information w.r.t. Σ if:

1. Auxiliary Information Computation. There exists a auxiliary information compu-
tation algorithm AuxGen(y, Y ) that on input a witness y ∈ DW for a statement Y
outputs an auxiliary information aux, such that (Y, aux) ∈ Relaux.

2. Hardness. For all PPT adversaries A, there exists a negligible function ν, such
that Pr[Rel(Y, aux, y∗) = 1|(Y, y)← RGen(λ); aux := AuxGen(y); y∗ ← A(Y, aux, sk)]
≤ ν(1λ), where the probability is derived by the random choice of RGen and A.
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3. (Public/Private) Decidability. There exists an efficient decide algorithm AuxVrfy
that on the input of a (signing key sk of Σ) statement Y , and auxiliary information
aux checks if (Y, aux) ∈ Relaux. If sk is required, we call it private decidability;
otherwise, public decidability.

Note that every hard relation is a hard relation with empty auxiliary information.
I.e., if Daux = ∅, we can define Relaux(⊥, ·) = 1 and thus Rel(Y,⊥, y) = Rel′(Y, y) is a
hard relation. We can generally encode the auxiliary information into the statement by
defining a new statement Y ′ := (Y ||aux). To simplify the notation, we assume that aux
can efficiently be extracted from Y ′, and we will stick to the variable Y .

3.3 Adaptor Signatures

The formal definition of digital signatures can be found in Appendix A.1. In this section,
we establish the definition of adaptor signatures in accordance with the security model
presented in [Erw+21; Aum+21]. However, we highlight the inadequacy of their secu-
rity model in Section 4 and direct the reader to Section 5 for more enhanced security
definitions.

3.3.1 Definition of Adaptor Signatures

Adaptor signature schemes are defined for hard relations Rel and signature schemes Σ.
They have a pre-sign algorithm that allows the signer to bind a statement Y of the hard
relation Rel and a chosen message msg to some signature σ̃. The pre-signature is publicly
verifiable, proving that anybody possessing a corresponding witness y can adapt this pre-
signature with the Adapt algorithm to a “full” signature σ. Furthermore, knowing a full
signature σ and the corresponding pre-signature σ̃, it is efficiently possible to extract the
witness y for the encoded relation Rel using the Extract algorithm.

Definition 6 (Adaptor signature). An adaptor signature scheme ASΣ,Rel w.r.t. a sig-
nature scheme Σ = (KGen, Sign,Vrfy) and a hard relation Rel consists of a tuple of four
algorithms ASΣ,Rel = (pSign,Adapt, pVrfy,Extract) defined as:

• σ̃ ← pSign(sk,m, Y ). The pre-signing algorithm is a PPT algorithm that on input a

secret key sk, message m ∈ {0, 1}lm and statement Y ∈ LRel, outputs a pre-signature
σ̃.

• b← pVrfy(vk,m, Y, σ̃). The pre-verification algorithm is a DPT algorithm that on

input a public key vk, message m ∈ {0, 1}lm, statement Y ∈ LRel and pre-signature
σ̃, outputs a bit b.

• σ =: Adapt(vk, σ̃, y). The adapting algorithm is a PPT algorithm that on input
a pre-signature σ̃ and witness y for the statement Y ∈ LRel outputs an adapted
signature σ.

• y =: Extract(vk, σ̃, σ, Y ). The extracting algorithm is a DPT algorithm that on input
a pre-signature σ̃, signature σ and statement Y ∈ LRel, outputs a witness y such
that (Y, y) ∈ Rel, or ⊥.
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We often omit the subscript from ASΣ,Rel writing AS to improve readability if the
signature scheme Σ and the hard relation Rel are clear from the context. The correctness
definitions look as follows:

Definition 7 (Pre-signature correctness). An adaptor signature AS satisfies pre-signature
correctness, if for all λ ∈ N and m ∈ {0, 1}lm:

Pr




pVrfy(vk,m, Y, σ̃) = 1 ∧
Vrfy(vk,m, σ) = 1 ∧

(Y, y′) ∈ Rel

∣∣∣∣∣∣∣∣∣∣

(sk, vk)← KGen(1λ),
(Y, y)← RGen(1λ),
σ̃ ← pSign(sk,m, Y )
σ := Adapt(vk, σ̃, y),
y′ := Extract(vk, σ̃, σ, Y )



= 1.

Definition 8 (Pre-signature adaptability). An adaptor signature scheme AS satisfies pre-
signature adaptability, if for all λ ∈ N, messages m ∈ {0, 1}∗, statement/witness pairs
(Y, y) ∈ Rel, public keys vk and pre-signatures σ̃ ∈ {0, 1}∗ we have pVrfy(vk,m, Y, σ̃) = 1,
then Vrfy(vk,m,Adapt(vk, σ̃, y)) = 1.

We stress that pre-signature adaptability is only defined for statements in the rela-
tion’s language.

3.3.2 Current Insufficient Security Notions

Security of adaptor signatures is defined as unforgeability and witness extractability,
which we recall in this subsection following [Erw+21; Aum+21].

Unforgeability. The unforgeability notion for adaptor signatures protects the signer
because the adversary should not be able to forge a signature. Similar to the regular
unforgeability notion, the adversary gets access to a signing oracle. In addition, it gets
access to a pre-signing oracle, and it may query both oracles on messages of its choice.
Unforgeability then demands that creating a forgery is hard for any efficient adversary
even if it learned a single pre-signature on a possibly maliciously chosen message m∗ for
a given random statement Y ∈ LRel.

Definition 9 (aEUF-CMA security). An adaptor signature scheme AS is unforgeable (or
aEUF-CMA secure) if for every PPT adversary A there exists a negligible function ν such
that for every λ ∈ N

Pr
[
aSigForgeA,AS(λ) = 1

]
≤ ν(λ),

where the definition of the experiment aSigForgeA,AS is given in Fig. 3 and the probability
is taken over the random choices of all probabilistic algorithms.

In this definition, the adversary can only learn a single pre-signature on the challenge
message. Additionally, the adversary can only access witnesses of statements generated
by himself. These restrictions do not accurately replicate an adversary’s perspective in
typical adaptor signature applications.
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aSigForgeA,AS(λ)

1 : Q := ∅, (sk, vk)← KGen(1λ)

2 : m∗ ← ASign(sk,·),pSign(sk,·,·)(vk)

3 : (Y, y)← RGen(1λ)

4 : σ̃ ← pSign(sk,m∗, Y )

5 : σ∗ ← ASign(sk,·),pSign(sk,·,·)(σ̃, Y )

6 : return (m∗ /∈ Q ∧ Vrfy(vk,m∗, σ∗))

Sign(sk,m)

1 : σ ← Σ.Sign(sk,m)

2 : Q := Q∪ {m}
3 : return σ

pSign(sk,m, Y )

1 : σ̃ ← AS.pSign(sk,m, Y )

2 : Q := Q∪ {m}
3 : return σ̃

Figure 3: The Game aSigForgeA,AS.

Witness Extractability. Informally, witness extractability protects the signer and
guarantees that a malicious verifier can not use a pre-signature σ̃ w.r.t. a statement Y to
produce a valid signature σ without revealing a witness y for Y . So, an adversary wins
the security game of witness extractability if he can provide a full signature that verifies
but was never queried on the signing oracle and does not allow for extraction with a
pre-signature on the same message from the pre-sign oracle.

Definition 10 (Witness extractability). An adaptor signature scheme AS is witness
extractable if for every PPT adversary A, there exists a negligible function ν such that
for every λ ∈ N

Pr[aWitExtA,AS(λ) = 1] ≤ ν(λ),

where the experiment aWitExtA,AS(λ) is defined in Fig. 4 and the probability is taken over
the random choices of all probabilistic algorithms.

aWitExtA,AS(λ)

1 : Q := ∅, (sk, vk)← KGen(1λ)

2 : (m∗, Y ∗)← ASign(sk,·),pSign(sk,·,·)(vk)

3 : σ̃ ← pSign(sk,m∗, Y ∗)

4 : σ∗ ← ASign(sk,·),pSign(sk,·,·)(σ̃)

5 : y∗ := Extract(vk, σ∗, σ̃, Y ∗)

6 : return (m∗ /∈ Q ∧ (Y ∗, y∗) /∈ Rel ∧ Vrfy(vk,m∗, σ∗))

Sign(sk,m)

1 : σ ← Σ.Sign(sk,m)

2 : Q := Q∪ {m}
3 : return σ

pSign(sk,m, Y )

1 : σ̃ ← AS.pSign(sk,m, Y )

2 : Q := Q∪ {m}
3 : return σ̃

Figure 4: The game aWitExtA,AS(λ).

The main difference between unforgeability and witness extractability is that in the
game of witness extractability, the adversary provides the statement Y to the challenger.
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Yet, this capability does not expose a trivial winning condition if the adversary adapts
the pre-signature using a witness it already knows since A only wins the witness ex-
tractability game if the provided forgery does not reveal a witness for Y .

We observe two problems with the current witness extractability security definition:
Witness extractability allows adaptor signature schemes where two full signatures can be
obtained by adapting one single pre-signature, as long as they both extract to a valid
witness. In addition, witness extractability only covers a single execution of an adaptor
signature protocol, as the adversary never learns an adapted pre-signature on a statement
without learning the witness before.

These security definitions lead to the following definition of a secure adaptor signature
scheme:

Definition 11 (Secure adaptor signature scheme). An adaptor signature scheme AS is
secure if it is unforgeable and witness extractable.

4 Security Gaps in Adaptor Signature Applications

This section shows three shortcomings in the current formalization of adaptor signatures.
We provide simple counterexamples of adaptor signatures that are secure in the definitions
of [Erw+21; Aum+21] but result in insecure real-world applications. To address each
shortcoming, we follow a three-step approach. We first explain the application it affects
and its key building blocks. Next, we show how these building blocks are instantiated
using adaptor signatures. In the final step, we construct an adaptor signature scheme
that trivially breaks the application while being secure w.r.t. the definitions of [Erw+21;
Aum+21].

We wish to emphasize that the security gaps we identify do not affect the security
of the concrete constructions used in these applications. Instead, we aim to highlight
gaps in the definitions of adaptor signatures that potentially lead to bad instantiations,
affecting the application’s overall security.

4.1 Breaking Coin-Mixing Using Malleable Pre-Signatures

Glaeser et al. presented a protocol for coin-mixing at CCS’22 that utilizes blind condi-
tional signatures (BCS) as a foundational component [Gla+22]. The authors demonstrate
the instantiation of BCS with adaptor signatures. However, we show through a counter-
example that a black-box construction of BCS from any adaptor signature scheme is im-
possible in general. For this, we give our counter-example that satisfies current adaptor
signature definitions but yields an insecure BCS scheme, thus compromising the security
of the coin-mixing protocol A2L+ as formulated in [Gla+22]. In fact, the cryptographic
primitives used in the recent work of Qin et al. [Qin+23] also suffers from the same
drawback. But for simplicity, we will be using [Gla+22] to demonstrate the security
gap. The crux of our attack is the exploitation of pre-signature malleability. A malleable
pre-signature σ̃ on a public key vk, message m, and statement Y can be converted into
a distinct pre-signature σ̃′ that verifies on the same public key, message, and statement,
but adapts to a signature different from the one that we would get from adapting σ̃.
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In the following, we review the essential components of blind conditional signatures,
along with the unforgeability definition for BCS. Additionally, we present a simple adap-
tor signature scheme that results in an insecure (i.e., forgeable) BCS scheme when instan-
tiated with the construction of Glaeser et al. [Gla+22].

Blind Conditional Signatures (BCS). A blind conditional signature scheme is de-
fined w.r.t. a signature scheme Σ := (KGen, Sign,Vf) and consists of the algorithms and
protocols (Setup,PPromise,PSolver,Open). To understand the attack, it is sufficient to
focus on the protocols PPromise and PSolver that are executed within the unforgability
experiment of BCS. We refer to [Gla+22] for the complete definitions:

• The puzzle promise protocol PPromise is an interactive protocol between two users
named H (the Hub) and Bob (user Bob). Both parties receive keys and a message m
as input, and at the protocol’s end, Bob outputs a puzzle τ and H gets nothing:

(⊥, τ)← PPromise ⟨H(⋆,m),Bob(⋆,m)⟩ .
Intuitively, the puzzle locks the signature σ on the message m.

• The interactive puzzle-solving protocol, running between users H and Bob, is a protocol
in which Bob learns a signature on a message that is “locked” in a puzzle τ ; the user
H also learns the signature (along with some other secret s that is irrelevant to our
attack and will be omitted):

((σ, ⋆), σ)← PSolver ⟨H(⋆,m),Bob(⋆,m, τ)⟩ .

In the following, we focus on the one-time unforgeability game, which gives the attacker
only one-time access to each oracle. Intuitively, (one-time) unforgeability requires that a
malicious Bob cannot forge signatures after learning a single signature. Here, we focus
on strong unforgeability, where the message may be the same, but the signatures must be
different, i.e., the adversary wins if he makes a single query to the oracle and manages to
compute a different signature (on the same message). This game is simpler and sufficient
for our attack. Furthermore, it makes our result stronger because not even one-time
unforgeability can be achieved in general. To formalize this notion, the adversary A
(playing the role of Bob) is given access to a PPromise and a PSolver oracle. Let us
denote by (vk,m, σ0), (vk,m, σ1) the final output of A. Intuitively, the attacker A breaks
the unforgeability if it satisfies the following conditions (other conditions specified in (c.f.
[Gla+22], Figure 7) are omitted as they are irrelevant to our attack):

1. A submitted m to the promise oracle PPromise and received vk from PPromise; i.e.,
(vk,m) ∈ L;

2. all signatures output by A must be valid, i.e., Vf(vk,m, σ0) = Vf(vk,m, σ1) = 1;

3. the tuples must be distinct, i.e.,(vk,m, σ0) ̸= (vk,m, σ1);

4. and A queried the solving oracle only once, i.e., Q ≤ q − 1, where Q is the number
of oracle queries and q− 1 the number of forgeries returned. In our one-time case, we
have q = 2.
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BCS Instantiation Using Adaptor Signatures. Glaeser et al. instantiate BCS using
an adaptor signature scheme AS. We concentrate on the construction of the promise and
solve protocol applicable to our attack and refer to [Gla+22] for formal construction.

• At the end of the PPromise protocol, Bob returns a puzzle τ that contains a message
m, a statement Y , and a pre-signature σ̃ (and some other elements irrelevant for our
attack).

• In the solve protocol PSolver, the party H receive the pre-signatures, adapts it to a full
signature σ, and returns σ.

Glaeser et al. provide the following proposition, which states the security of the A2L+

protocol, assuming the security of the underlying adaptor signature scheme.

Proposition 1 (Theorem 4.9 from [Gla+22]). Let ΠE be a linear-only encryption scheme,
Σ be a strongly unforgeable signature scheme, Rel be a hard relation, and let ΠNIZK be a
sound NIZK proof system. Let AS be a secure adaptor signature scheme for Σ and Rel.
Assuming the hardness of one more discrete-log (OMDL) problem, the A2L+ instantiation
from [Gla+22] is a secure blind conditional signature scheme.

Breaking Blind Conditional Signatures from Adaptor Signatures. Contrary to
this proposition, we claim in Theorem 1 that Proposition 1 does not hold in general,
and we prove this claim in two steps: First, we create an adaptor signature scheme
AS′ that adheres to current definitions but enables an adversary to obtain two distinct
valid signatures from a single pre-signature via malicious adapting. Second, we illustrate
how an attacker can break the unforgeability of the BCS construction of [Gla+22] if it
is instantiated using AS′. Our proof requires a natural property of the main building
block of AS′, which we call unconnected adaptor signatures defined below. To the best of
our knowledge, all currently known adaptor signature schemes (e.g., Schnorr-based) are
unconnected.

Theorem 1. There exists a secure adaptor signature scheme AS′, such that the BCS
instantiation from [Gla+22] does not satisfy (one-time) unforgeability.

Unconnected Adaptor Signatures. Our counterexample adaptor signature scheme
needs to be unconnected, which means that for all λ ∈ N, all keys (sk, vk)← KGen(λ), all
messages m, all statement-witness pairs (Y, y) ← RGen(λ), and all elements r1 ̸= r2 ←$

DR, there exists a negligible function ν, such that the probability

Pr[Adapt(vk, pSign(sk,m, Y ; r1), y) = Adapt(vk, pSign(sk,m, Y ; r2), y)] ≤ ν(λ).

Intuitively, this property ensures that two pre-signatures generated with independent
randomness but on the same message and statement result in two distinct signatures with
overwhelming probability.
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Malleable Pre-Signatures. We now build a secure adaptor signature scheme AS′ that
has malleable pre-signatures and is based on an unconnected adaptor signature scheme
AS. Each pre-signature of AS′ is a pair of two distinct pre-signatures of AS on the
same message and statement. The pre-verify algorithm of AS′ runs AS.pVrfy on both pre-
signatures components separately. The adapt algorithm of AS′ adapts the first component
of the pre-signature using AS.Adapt. The extract algorithm tries to extract a valid witness
for the statement Y using the signature and the first pre-signature component by calling
AS.Extract. If this fails, it tries the same using the signature and the second pre-signature
component. A formal description of the transformation from AS to AS′ is given in Fig. 5
and we provide a formal security analysis of AS′ in Lemma 23.

pSign′(sk,m, Y )

1 : (r1, r2)←$ Z2
p

2 : σ̃1 ← pSign(sk,m, Y ; r1)

3 : σ̃2 ← pSign(sk,m, Y ; r2)

4 : return (σ̃1, σ̃2)

Adapt′(vk, σ̃, y)

1 : (σ̃1, σ̃2) =: σ̃

2 : σ := Adapt(vk, σ̃1, y)

3 : return σ

pVrfy′(vk,m, Y, σ̃)

1 : (σ̃1, σ̃2) =: σ̃

2 : b1 := pVrfy(vk,m, Y, σ̃1)

3 : b2 := pVrfy(vk,m, Y, σ̃2)

4 : return b1 ∧ b2

Extract′(vk, σ̃, σ, Y )

1 : (σ̃1, σ̃2) =: σ̃

2 : y =: Extract(vk, σ̃1, σ, Y )

3 : if (Y, y) ∈ Rel return y

4 : return Extract(vk, σ̃2, σ, Y )

Figure 5: An adaptor signature scheme AS′ for which any valid pre-signature of AS′ can
be adapted to two different valid signatures.

Breaking the Unforgeability of BCS Using Malleable Pre-Signatures. The fol-
lowing adversary A breaks the (one-time) unforgeability of BCS if it is instantiated using
AS′. A queries the PPromise oracle once on a random message m and learns a puzzle τ .
The puzzle τ contains a pre-signature σ̃ on m on a random statement Y . Furthermore,
the adversary queries the PSolve oracle once on input the puzzle τ and learns a signature
σ, which is the output of Adapt(σ̃, y), where y is the corresponding witness of Y . With
this pre-signature-signature pair, A can learn y using the Extract algorithm. Knowing
the pre-signature σ̃ and the corresponding witness y, the adversary parses σ̃ := (σ̃1, σ̃2)
and computes σ̃′ := (σ̃2, σ̃1) by switching the order of the elements. Now, using the adapt
algorithm Adapt′ on input (σ̃′, y), the adversary obtains a second distinct signature σ′ on
the message m. Note that with overwhelming probability, the second σ′ is distinct from
σ since AS is an unconnected adaptor signature scheme. This breaks the unforgeability
of BCS.
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4.2 Breaking Blind Hubs Using Unadaptable Adaptor Signa-
tures

The second definitional gap stems from the fact that the security definitions do not hold
for statementsthat are not in the language of the relation Rel, i.e., Y /∈ LRel. This
gap is not a problem for early applications, such as payment channels, because the user
computing the statement also adapts the corresponding pre-signature. However, we show
that this gap leads to devastating attacks in recent applications, such as coin-mixing,
which allows the adversary to steal coins.

In the following, we first give a counter-example in which a valid pre-signature for a
“non-language” statement cannot be adapted to a valid signature. Then, we show that
this leads to an immediate loss of fairness in coin-mixing applications [Qin+23; Gla+22].

Flexible Blind Conditional Signatures. Qin et al. [Qin+23] propose the new notion
of flexible blind conditional signatures (FBCS). FBCS are blind conditional signatures in
which the hub H (cf. Section 4.1) only learns a commitment on a transaction rather
than the transaction in plaintext. Similar to the security notions of ordinary BCS, a
crucial security requirement for FBCS is unlockability. Unlockability guarantees that no
malicious hub H can refrain coins by running a PPromise and a related PSolve. In the
unlockability security experiment, an adversary A can run a single execution of PPromise
and a related PSolve. A wins the experiment if he:

• Outputs a valid signature on a transaction message from Bob to A;

• the puzzle open algorithm run by Bob does not reveal a valid signature from A to
Bob.

FBCS Instantiation Using Adaptor Signatures. Qin et al. provide a construction
for a FBCS based on the DLog relation and the ECDSA signature scheme, which also uses
adaptor signature schemes for ECDSA. Due to the similarity of the FBCS construction
and the BCS construction, we refer the reader to Section 4.1 for a discussion of this
construction. The authors refer to this FBCS construction as BlindHub and formally
claim its security:

Proposition 2 (Theorem 1 from [Qin+23], informal). Let ΠEnc be a linear-homormorphic
encryption scheme, ΠAS a secure adaptor signature scheme, ΠBAS a secure BAS scheme,
ΠRSoRC a secure signature on randomizable commitments scheme, ΠNIZK a sound proof
system. If the one-more DLog assumption is assumed to be hard, then the BlindHub
protocol is a secure, flexible blind conditional signature scheme.

Breaking (Flexible) Blind Conditional Signatures from Adaptor Signatures.
Contrary to this proposition, we claim that the BlindHub construction is insecure in
general if it is instantiated using an unadaptable adaptor signature scheme.

Theorem 2. If the BlindHub protocol of [Qin+23] is instantiated with a unadaptable
adaptor signature scheme AS′ and a relation that has malicious statements for valid wit-
nesses, then it is in general not a secure flexible blind conditional signature scheme.
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pSign′(sk,m, Y )

1 : if Y /∈ LRel then
2 : σ̃ := ⊥
3 : else

4 : σ̃ := pSign(sk,m, Y )

5 : return σ̃

Adapt′(vk, σ̃, y)

1 : if σ̃ = ⊥ then

2 : σ = ⊥
3 : else

4 : σ = Adapt(vk, σ̃, y)

5 : return σ

pVrfy′(vk,m, Y, σ̃)

1 : if Y /∈ LRel then
2 : ret = 1

3 : else

4 : ret := pVrfy(vk,m, Y, σ̃)

5 : return ret

Extract′(vk, σ̃, σ, Y )

1 : if σ̃ = ⊥ then

2 : y := ⊥
3 : else

4 : y := Extract(vk, σ̃, σ, Y )

5 : return y

Figure 6: An secure adaptor signature scheme AS′, for which valid pre-signatures on
malicious statements can not be adapted to a verifying signature.

We prove Theorem 2 in two steps: First, we show how to build unadaptable adap-
tor signatures. Second, we show how to break unlockability using unadaptable adaptor
signatures.

Construction of an Unadaptable Adaptor Signature Scheme. Let AS be a se-
cure adaptor signature for some signature scheme Σ and the relation Rel, such that the
language LRel is efficiently decidable: there exists an efficient algorithm that outputs 1 if
Y ∈ LRel, and 0 otherwise. Given AS, we construct a new adaptor signature AS′, that ad-
heres to the same security properties of AS, and therefore also to the adaptability notion,
but which trivially leads to an attack for statements not in the language of the relation
Rel, i.e., Y /∈ LRel. We model this malicious functionality by letting the pre-signing algo-
rithm output ⊥ for statements not in the language of the relation. The pre-verification
algorithm accepts ⊥ as a valid pre-signature if Y /∈ LRel.

Therefore, ⊥ is a valid pre-signature on a malicious statement, and thus Adapt can
not adapt ⊥ to a valid signature on the inputs of a public key vk and a valid witness y. A
formal description of AS′ is given in Fig. 6 and we prove the security of AS′ in Lemma 24.

Breaking Unlockability. In a coin mixing setup, an adversary acting as hub H can
break unlockability if the used adaptor signature scheme is unadaptable for dishonest
statements: In the puzzle promise phase, the hub H samples a malicious statement Y ′

and computes a valid pre-signature on Y ′ by simply outputting ⊥. The other party Bob
accepts the puzzle since the pre-signature ⊥ pre-verifies. Bob now runs the puzzle solve
protocol together with H. When the puzzle is solved, H learns a signature and is paid by
Bob. However, Bob can not adapt the pre-signature (i.e., ⊥) provided by H even if he
learns a valid witness for the statement Y ′, so Bob can not claim a payment by H.
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The concrete instantiations provided in [Gla+22; Qin+23] avoid this kind of attack
since the relation has only witnesses for statements that are well-formed, and Hmust prove
the knowledge of a witness using a NIZK. Yet, Proposition 2 does not hold in general: If
we instantiate the protocols with a relation, where maliciously chosen statements Y /∈ LRel

can have valid witnesses, the hub H can prove knowledge of the witness while pre-signing
w.r.t. a malicious statement. The language LRel := {((1, Y ), y)|Y = gy; y ∈ Zp} yields
such a hard relation. When instantiated with such a hard relation, the blind hub protocol
is insecure since H can prove the knowledge of a witness for a maliciously computed
statement of the form (0, Y ). This statement is clearly not in the language since the first
bit is a 0.

4.3 Breaking VweTS Using Signature Leaky Pre-Signatures

Madathil et al. [Mad+22] introduced verifiable witness encryption based on threshold sig-
natures (VweTS) at NDSS’23 that with applications in oracle-based conditional payments
for blockchains. Their instantiation of VweTS uses adaptor signatures as one of the many
building blocks. In this section, we present another gap in the definitions of adaptor sig-
natures that leads to an attack against their instantiation of VweTS.In the following, we
first recall relevant parts of their construction necessary to follow our attack. We then
construct the adaptor signature scheme that satisfies the security definitions but leads to
a devastating attack when used as a building block in the construction of VweTS.

Verifiable Witness Encryption Based on Threshold Signatures (VweTS). A
VweTS scheme uses two signature schemes, namely, Σ := (KGen, Sign,Vf) and Σ′ :=
(KGen′, Sign′,Vf ′) and provides the following efficient algorithms (EncSig,VfEnc,DecSig).
We refer to Σ′ as the signature scheme and Σ as the transaction signature scheme. A
VweTS protocol is run between an encryptor that encrypts transaction signatures on
transaction messages into ciphertexts and a decryptor that decrypts these ciphertexts to
obtain transaction signatures. The important part is that the decryption is not done
using a decryption key but rather using a sufficient number of instance signatures on
instance messages. An instance signature confirms the instance message by a third party
identified by an instance verification key vk′. We call these third parties instance signers
from now on.

To understand our attack, it is sufficient to focus on the protocols EncSig, and DecSig
and we refer to [Mad+22] for a more formal description of VweTS.

• The signature encryption algorithm EncSig encrypts a tuple of signatures (σj)j∈[M ] on
transaction messages (mj)j∈[M ] to produce a ciphertext c. The ciphertext c is generated
with respect to a tuple of instance verification keys (vk′i)i∈[N ], and instance messages
(m′

j)j∈[M ] as well.

• The decryption algorithm DecSig takes as input a tuple of ρ (valid) instance signatures
σ′
i (under the instance verification keys vk′i) on an instance message m′

j. It returns the
transaction signature σj on the transaction message mj.

The main security property of a VweTS scheme is called one-wayness, which intuitively
guarantees that no adversary can output a valid transaction signature forgery σ∗ for a
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transaction message mj encrypted in a VweTS ciphertext c without access to at least
ρ number of valid instance signatures on the corresponding instance messages m′

j. To
formalize one-wayness, an adversary A can corrupt up to ρ − 1 instance signers and
has access to a signature encryption oracle that runs EncSig on adversarially chosen
instance messages and transaction messages. We omit the other oracles, as our attack
will not use them. Furthermore, our attack only queries the signature encryption oracle
once. Eventually, A has to output a signature forgery σ∗, an index j∗ that marks the
j∗−th transaction message in its encryption oracle call. Since our attack only queries the
signature encryption oracle once, A’s output has to satisfy the following conditions to
win the one-wayness experiment:

1. The adversary corrupted less than ρ instance signers;

2. the signature σ∗ verifies under the challengers verification key vk and the j∗ − th
transaction message mj∗ .

VweTS Instantiation Using Adaptor Signatures. Madathil et al. also presented
VweTS constructions, which utilize adaptor signatures as a building block. Intuitively,
the encryption of a transaction signature on a transaction message mj consists of an
adaptor pre-signature on mj with respect to a random statement Yj := gyj for yj ←$ Z∗

p.
The witness yj is verifiably secret-shared, and each share is encrypted using a special en-
cryption scheme that is irrelevant to our context. The only information about this special
encryption scheme we need to know here is that the j-th ciphertext can be decrypted
given ρ instance signatures on the instance message m′

j. To decrypt a signature on the
message mj, one has to adapt the pre-signature on mj to a valid signature using the
witness yj. Recall that the witness yj is available by decrypting ρ number of the special
ciphertexts given the instance signatures.

Madathil et al. proposed the security of the VweTS construction utilizing the se-
curity of the used adaptor signature scheme in a theorem, which we reiterate below as
Proposition 3.

Proposition 3 (Theorem 1 from [Mad+22], informal). Let Σ and Σ′ be secure signature
schemes, WES be secure witness encryption based on signatures, AS be a secure adaptor
signature scheme for Σ and the relation Rel. Let Π := (Setup,Prove,Vrfy) be a NIZK proof
system satisfying simulation soundness. Then, the VweTS construction from [Mad+22]
achieves one-wayness.

Breaking VweTS from Adaptor Signatures. Contrary to this proposition, we claim
that there exists an adaptor signature scheme AS that is secure in accordance with Def-
inition 11, but if the VweTS construction from [Mad+22] is instantiated with AS, one-
wayness does not hold. We prove our claim in two steps. First, we construct a secure
adaptor signature scheme AS, in which multiple pre-signatures on the same message can
reveal information on an additional valid signature on the same message. Second, we show
how an adversary wins the game ExpOWay with overwhelming probability if a VweTS is
instantiated using AS′.
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Theorem 3. Let Σ,Σ′, Π, and WES be as in Proposition 3. There exists a secure adaptor
signature scheme AS′ for the signature scheme Σ and the relation Rel, such that the VweTS
construction from [Mad+22] instantiated with AS′ does not achieve one-wayness.

An Adaptor Signature with Leaky Pre-Signatures. In Definition 10 (witness
extractability) and Definition 9 (aEUF-CMA security), the adversary A of the adaptor
signature is allowed to query the pre-signing oracle on a challenge message m∗ exactly
one time. However, in the VweTS security game, the adversary A can query the EncSig
oracle with a tuple of transaction messages (m0, . . . ,mM). Thereby, A can learn at least
two pre-signatures on the same message with different random adaptor statements for
each.

Our counter-example is inspired by [DOY22]. Dai et al. propose a counter-example
that shows a gap if an adversary can see two pre-signatures on the same message and
the same statement. This counterexample can not break Proposition 3, since the VweTS
construction samples a random statement for each pre-signature, and the probability of
learning two pre-signatures on the same message is negligible. Furthermore, they use a
pseudorandom function instead of a random function. As a key for the PRF, they also use
the signing key sk. Since PRFs are not leakage-resilient in general, it can be detectable
by an adversary if it learns σ̃,PRF(sk,m, Y ), or σ̃, r for a random value r ←$ {0, 1}ℓ
(c.f. game hop between G0 and G1 in [DOY22], proof of their Theorem 3). Therefore,
we do not assume their counterexample to be proven secure but follow the flavor of this
counterexample in a provable manner.

To overcome the described issues, our counter-example uses hash functions modeled
as random oracles instead of pseudorandom functions. Using the RO is reasonable since
the VweTS constructions in [Mad+22] are based on Schnorr and ECDSA signatures that
already utilize the random oracle model for security. On a high level, our counter-example
adaptor signature scheme AS′ pre-signs a message-statement pair (m,Y ) using the under-
lying pre-sign algorithm of AS and by appending a random element r to this pre-signature.
Depending on a coin toss, the random element is either H(sk,m), i.e., the output of the
random oracle on the input of the signing key sk and the message m or the XOR of
H(sk,m) and a valid signature on m. AS′ is formally defined in Fig. 7.

This adaptor signature scheme AS′ is secure w.r.t. Definition 11, as we validate in
Lemma 25.

How an Adversary Can Break the One-Wayness of VweTS We now show how
an adversary A can break the one-wayness of VweTS if the construction in [Mad+22]
is instantiated using AS′. One way for an adversary A to win the game ExpOWay is to
compute a verifying signature on a challenge message mj by only querying the EncSig
oracle and not querying the signature and the instance signature oracles related to mj.
Let us assume for simplicity that M = 2, where M is the size of the message tuples used
in EncSig. Keeping this in mind, the adversary queries the oracle EncSigO on random
instance messages m′

0,m
′
1, and on a tuple of transaction messages (m0,m0). Internally,

the oracle computes two pre-signatures on the message m0 with random statements and
outputs the pre-signatures as part of the VweTS ciphertext c. Therefore, with probability
1/2, the adversary can learn a valid signature on the message m0 by XOR-ing the two
random elements from the two pre-signatures returned by the oracle. In the generic case
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pSign′(sk,m, Y )

1 : σ̃ ← pSign(sk,m, Y )

2 : b←$ {0, 1}
3 : r0 ← H(sk,m)

4 : σ ← Sign(sk,m)

5 : r1 := r0 ⊕ σ

6 : return (σ̃, rb)

pVrfy′(vk,m, Y, σ̃)

1 : (σ̃′,⊥) := σ̃

2 : return pVrfy(vk,m, Y, σ̃′)

Extract′(vk, σ̃, σ, Y )

1 : (σ̃′,⊥) := σ̃

2 : return Extract(vk, σ̃′, σ, Y )

Adapt′(vk, σ̃, y)

1 : (σ̃′,⊥) := σ̃

2 : return Adapt(vk, σ̃′, y)

Figure 7: A secure adaptor signature scheme AS′, for which two pre-signatures on the
same message can leak an additional signature.

of M being some arbitrary polynomial in the security parameter, the adversary can use
the above strategy and win with overwhelming probability 1− (1/2)M−1. This breaks the
one-wayness of adaptor signature-based VweTS constructions.

5 Enhanced Adaptor Signature Security Definitions

The attacks presented in Section 4 serve as clear indications that the security properties
captured in the definition of adaptor signatures in [Erw+21; Aum+21] are insufficient for
most applications. The work of Dai, Okamoto, and Yamamoto [DOY22] takes a significant
step towards remedying this state of affairs by proposing stronger security properties that
a good adaptor signature scheme should satisfy (over the properties captured by [Erw+21;
Aum+21]).

In this section, we restate the properties of extractability, unique extractability, and
unlinkability as defined in [DOY22]. In addition, we identify an additional security
property for adaptor signatures called pre-verify soundness, which is important for cer-
tain applications such as (blind) Coin Mixing [Gla+22; Qin+23] and oracle-based pay-
ments [Mad+23]. All four properties are desirable, and a good adaptor signature scheme
should satisfy all of them. However, as we will see later, some applications of interest
may require only a subset of these four properties from the adaptor signature scheme.

5.1 Extractability

Extractability, proposed by Dai, Okamoto, and Yamamoto [DOY22], combines and ex-
tends the security properties of witness extractability (Definition 10) and adaptor unforge-
ability (Definition 9) to the so-called multiple query setting. In particular, the adversary
is allowed to see multiple pre-signatures on the challenge message as well as pre-signatures
on multiple honestly sampled statements. In contrast, in prior definitions, the adversary
was restricted to seeing only a single pre-signature on the challenge message and an hon-
estly sampled statement. In the multiple query setting, the adversary’s task is to output
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a special forgery (m∗, σ∗) for which σ∗ cannot be used to successfully extract a witness
(breaking extractability). We formally state their definition below:

Definition 12 (Extractability). An adaptor signature scheme AS is extractable, if for
every PPT adversary A there exists a negligible function ν such that for every λ ∈ N

Pr[ExtA,AS(λ) = 1] ≤ ν(λ) ,

where the experiment ExtA,AS is described in Fig. 8, and the probability is taken over the
random choices of all probabilistic algorithms.

ExtA,AS(λ)

1 : (sk, vk)← Gen(1λ); b← 1;S, T ← ∅
2 : (m∗, σ∗)← A(vk)NewY(λ),Sign(sk,·),pSign(sk,·,·)
3 : assert Vrfy(vk,m∗, σ∗)

4 : assert (m∗ /∈ S)
5 : for (Y, σ̃) ∈ T [m∗]

6 : if (Y,Extract(Y, σ̃, σ∗)) ∈ Rel then

7 : b← 0

8 : return b

NewY(λ)

1 : (Y, y)← Rel.RGen(1λ); return Y

Sign(sk,m)

1 : σ ← Σ.Sign(sk,m)

2 : S ← S ∪ {m}
3 : return σ

pSign(sk,m, Y )

1 : σ̃ ← AS.pSign(sk,m, Y )

2 : T [m]← T [m] ∪ {(Y, σ̃)}
3 : return σ̃

Figure 8: The security game ExtA,AS(1
λ).

Extractability Prevents Leaky Pre-Signatures. Leaky pre-signatures, which we
introduced in Section 4.3, allow an adversary to break the security of applications that
use adaptor signatures in a multi-query setting: A single leaky pre-signature only reveals
randomized information, whereas multiple pre-signatures on the same message reveal
an additional signature on the same message. If we use an adversary that mimics the
same strategy in the security game Ext of extractability, we can see that this adversary
wins Ext with probability 1 − (1/2)|T [m∗]−1| rendering adaptor signatures with leaking
pre-signatures insecure: The adversary queries the pre-sign oracle multiple times on the
same message m∗ and extracts a fresh signature on m∗. This fresh signature does not
extract with any pre-signature and hence is successful in winning Ext. Therefore, the
counter-example we provide in Section 4.3 cannot achieve extractability.

5.2 Unique Extractability

Unique extractability guarantees that any verifying pre-signature can be viewed as a
commitment to both a single valid signature and a single witness. This means that no
efficient adversary can compute a pre-signature σ̃ on a message m and a statement Y ,
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such that there exist two different signatures on m that both extract to a valid witness
with σ̃. More formally:

Definition 13 (Unique Extractability). An adaptor signature scheme AS is unique ex-
tractable, if for every PPT adversary A there exists a negligible function ν such that for
every λ ∈ N

Pr
[
UniqueExtractabilityA,AS(λ) = 1

]
≤ ν(λ) ,

where experiment UniqueExtractabilityA,AS is described in Fig. 9, and the probability is
taken over the random choices of all probabilistic algorithms.

UniqueExtractabilityA,AS(λ)

1 : (vk, sk)← KGen(1λ)

2 : (m,Y, σ̃, σ, σ′)← ASign(sk,·),pSign(sk,·,·)(vk)

3 : assert (σ ̸= σ′) ∧ Vrfy(vk,m, σ) ∧ Vrfy(vk,m, σ′)

4 : assert pVrfy(vk,m, Y, σ̃)

5 : y ← Extract(Y, σ̃, σ); y′ ← Extract(Y, σ̃, σ′)

6 : return (Y, y) ∈ Rel ∧ (Y, y′) ∈ Rel

Sign(sk,m)

1 : σ ← Σ.Sign(sk,m)

2 : return σ

pSign(sk,m, Y )

1 : σ̃ ← AS.pSign(sk,m, Y )

2 : return σ̃

Figure 9: The security game UniqueExtractabilityA,AS(λ).

Unique Extractability Prevents Malleable Pre-Signatures. Unique extractabil-
ity enforces a one-to-one relation between pre-signatures and adapted signatures. There-
fore, we can see a pre-signature of an adaptor signature scheme that achieves unique
extractability as a binding commitment to a single signature. The counter-example we
present in Section 4.1 does not achieve unique extractability since each pre-signature can
be adapted to two different full signatures that both extract. Such an adaptor signature
scheme cannot achieve unique extractability.

(Strong) Full Extractability Dai et al. also propose two more security notions named
(strong) full extractability. Full extractability facilitates the security proofs for adaptor
signatures under the caveat of a more complex definition, and strong full extractability
transfers the goals of strong unforgeability of signature schemes for adaptor signatures.
Strong full extractability is implied by extractability and unique extractability.

5.3 Unlinkability

Unlinkability guarantees that an adversary cannot distinguish standard signatures from
adapted pre-signatures, even when the pre-signatures are adapted using adversarially
generated witnesses. Dai et al. argue that unlinkability is the right security property to
guarantee on-chain privacy in the context of atomic swaps [Erw+21].

Definition 14 (Unlinkability). An adaptor signature scheme AS is unlinkable, if for
every PPT adversary A there exists a negligible function ν such that for every λ ∈ N

∣∣Pr
[
UnlinkabilityA,AS(λ, 0) = 1

]
− Pr

[
UnlinkabilityA,AS(λ, 1) = 1

]∣∣ ≤ ν(λ) ,
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where experiment UnlinkabilityA,AS is described in Fig. 10, and the probability is taken over
the random choices of all probabilistic algorithms.

UnlinkabilityA,AS(λ, b)

1 : (sk, vk)← KGen(1λ)

2 : b′ ← AChall(b,sk,·,·),Sign(sk,·),pSign(sk,·,·)(vk)

3 : return b′

Chall(b, sk,m, (Y, y))

1 : assert (Y, y) ∈ Rel

2 : σ̃ ← AS.pSign(sk,m, Y )

3 : σ0 := Adapt(vk, σ̃, y)

4 : σ1 ← Σ.Sign(sk,m)

5 : return σb

pSign(sk,m, Y )

1 : σ̃ ← AS.pSign(sk,m, Y )

2 : return σ̃

Sign(sk,m)

1 : σ ← Σ.Sign(sk,m)

2 : return σ

Figure 10: The security game UnlinkabilityA,AS(λ, b).

5.4 Pre-Verify Soundness

We propose pre-verify soundness as a new security property for adaptors. Informally, it
ensures that the pre-verification algorithm satisfies computational soundness w.r.t. the
relation Rel. In particular, pVrfy should reject pre-signatures computed using statements
Y /∈ Rel. Intuitively, pre-verify soundness ensures that every valid pre-signature can be
adapted to a full signature, and one can extract a witness from it. This complements
the property of pre-signature adaptibility (Definition 8), which is restricted to honestly
generated pre-signatures on statements in the relation. Pre-verify soundness is important
for applications in which the pre-signer also computes the statement w.r.t., which the pre-
signature is computed on, since without pre-verify soundness, a malicious signer can trick
a verifier into accepting pre-signatures which cannot be adapted even in the presence of
a valid witness (c.f. Section 4.2). Suppose the application guarantees that the verifying
party always computes the statement. In that case, pre-verify soundness might not be
required from the underlying adaptor signature scheme, and more efficient solutions can
be used.

Definition 15 (Computational Pre-Verify Soundness). An adaptor signature scheme AS
satisfies computational pre-verify soundness if for every PPT adversary A there exists a
negligible function ν such that for every λ ∈ N and polynomially-bounded Y /∈ LRel,

Pr [(sk, vk)← KGen(λ), (m, σ̃)← A(sk) : pVrfy(vk,m, σ̃, Y ) = 1] ≤ ν(λ) .

For applications where the adversary is allowed to also choose their signing and verifi-
cation keys, the following stronger statistical notion of pre-verify soundness is useful. The
stronger notion is fundamentally similar to the notion of soundness for non-interactive
proofs in the plain model . Like non-interactive plain model proofs, the statistical notion
of pre-verify soundness is unachievable for non-trivial NP relations. For NP relations
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where checking membership can be done efficiently (e.g., discrete-log language over ef-
ficiently recognizable groups), statistically pre-verify soundness can be achieved simply
by letting pVrfy algorithm decide membership of the given statement. Nevertheless, we
explicitly define this as an additional property for pVrfy as prior constructions of adaptor
signatures nor the application they were used in did this check, resulting in a break of
the application as discussed in Section 4.

Definition 16 (Statistical Pre-Verify Soundness). An adaptor signature scheme AS sat-
isfies statistical pre-verify soundness if for every λ ∈ N, polynomially-bounded Y /∈ LRel,
key pair (sk, vk) in the support of KGen(λ),

Pr [∃(m, σ̃) : pVrfy(vk,m, Y ) = 1] = 0 .

Pre-Verify Soundness Prevents Non-Adaptable Adaptor Signatures. Our counter-
example in Section 4.2 does not achieve pre-verify soundness, since ⊥ is a valid pre-
signature for a statement that is not in the language of the hard relation.

6 Dichotomic Signature Schemes

In this section, we distill a suitable abstraction of signature schemes that can be trans-
formed into adaptor signature schemes without changing the verification algorithm. To
this end, we illustrate the algebraic properties with Schnorr signatures [Sch91]; knowing
that all other existing adaptor signature schemes can be expressed analogously. We then
introduce dichotomic signatures, which are digital signatures characterized by an ab-
straction of the algebraic structure common to all adaptor signatures. Boneh, Shen, and
Waters [BSW06] use a similar abstraction to transform unforgeable signature schemes
into strongly unforgeable ones (cf. Lemma 9). In our case, this algebraic structure will
help us to construct adaptor signatures from dichotomic signatures in a black-box fashion.

6.1 Motivation — Schnorr Adaptor Signatures

The Schnorr signing process for a message m follows these steps: The signer selects a
random value r from the set Zq and computes R as R := gr. It calculates a hash value
h := H(vk∥R∥m) and determines s as s := r+h·sk. The resulting signature is represented
as σ := (R, s).

We will now explain the modification made to the signing algorithm that results
in the computation of a pre-signature. In the context of computing a pre-signature σ̃
for both the message m and the statement Y = gy, the hash computation adjusts to
h := H(vk∥R ·Y ∥m), and s remains determined as r + h · sk. The final pre-signature σ̃
takes the form of (σ̃1, σ̃2) := (R ·Y , s). The pre-signature verification algorithm checks
if gσ̃2 ·Y = σ̃1 · vkh. To adapt a pre-signature to a full signature, one leverages the
homomorphic property of the discrete logarithm relation as follows. Given the witness
y one can set σ := (σ̃1, σ̃2+y ). Consequently, given both σ̃ and σ, we can extract the
witness y by performing a subtraction.
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6.1.1 The Algebraic Properties of Schnorr Adaptor Signatures

We make two observations on the structure of Schnorr adaptor signatures:

• The first observation is that the underlying hard relation R = {(Y, y) = (gy, y)} is
an injective homomorphic one-way function. Homomorphism is required for both
the verification of the pre-signature and the adaption of a pre-signature to a full
signature. Therefore, we abstract this property as R = {(Y, y) : Y = OWF(y)}
where OWF is a homomorphic one-way function.

• The second observation is that the signature σ consists of two components (σ1, σ2) =
(R, r + sk · h), which require specific homomorphic properties to guarantee three
things simultaneously: first, the verification of the pre-signature succeeds, second,
any valid pre-signature can be adapted, and third, the pre-signature can be com-
puted by knowing a statement Y only (and not necessarily the corresponding wit-
ness y). These homomorphic properties are the following: Firstly, σ1 = gr consists
of a commitment to the randomness r, whereas σ2 = r + sk · h contains the (real)
randomness r, as well as a hash on the first component σ1. This structure efficiently
computes a pre-signature since modifying σ1 into σ1 · Y is possible knowing only
the statement Y . And since this modified σ1 is used as input for the computa-
tion of σ2, this modification sufficiently binds Y to the pre-signature. Secondly, a
signature is verified by checking if gσ2 = gr+sk·h equals σ1 · vkh = R · vkh. This
means, the pre-verification algorithm can multiply gσ2 by Y to implicitly compute
gy+r+sk·h without knowing y. Furthermore, if (σ1 · Y, gσ2 · Y ) verifies, it means, that
(σ1 · Y, σ2 + y) also verifies. This second homomorphic property implies that each
adapted pre-signature verifies, guaranteeing pre-signature adaptability.

6.1.2 A Generalization: Dichotomic Signatures

To formalize these intuitive properties, we provide an abstraction of signature schemes
that we call dichotomic signatures. Our first step is to work with general NP relations
that have some homomorphic properties. We consider the relation Rel = {(Y, y) : Y =
OWF(y)}, where OWF is a one-way function that is also homomorphic. This abstrac-
tion nicely generalizes all prior works that consider specific NP relations with a rich
algebraic structure, such as the DLog relation R = {(Y, y) : Y = gy} used for Schnorr
signatures [Sch91].

Given this formulation of hard problems, the main challenge is to find a functional
abstraction for signatures that supports the main properties of adaptor signatures: pre-
signature generation knowing the statement Y and extraction of corresponding witness y
given only the pre-signature and the adapted signature. Our analysis of the prior scheme
reveals that the signature generation must be a function of the randomness r along with
OWF(r) (where OWF is the function leading to R = gr). Dichotomic signatures formalize
this intuition by letting the signature σ be a two-component signature σ := (σ1, σ2), which
can be computed by the functions Σ1 and Σ2, respectively. Here σ1 ← Σ1(sk,m,OWF(r))
is a function of the secret key sk, the messagem and the image of the randomness OWF(r);
it outputs σ1. The second function σ2 ← Σ2(sk,m, σ1; r) is a function of the secret key,
the message, the first component σ1, and the randomness r; it outputs σ2. We refer to this
splitting in the signature generation process as decomposability property of dichotomic

32



signatures. We additionally want a homomorphism property from dichotomic signatures
that requires that

Σ2(sk,m, σ1; r) + y = Σ2(sk,m, σ1; r + y).

Looking ahead, this homomorphism will be crucial for pre-signature verification, adap-
tion, and extraction when building adaptor signatures based on dichotomic signatures.

The key idea for a pre-signature generation is to mask σ1 generation using the state-
ment Y in the following way:

σ̃1 := Masked(σ1)← Σ1(sk,m;OWF(r) ·Y ),

while generating σ̃2 ← Σ2(sk,m, σ̃1; r) as usual. We heavily rely on the homomorphic
properties of OWF, which is the function used in the relation R and compatible with
the signatures’ randomness space. Therefore, we can generate a pre-signature using
Y · OWF(r) without knowing the witness y, as required in adaptor signatures. Notice
that the pre-signature does not verify as a full signature with respect to the randomness
r as we have implicitly set r+y as the randomness for the signature, and we do not know
the witness y yet. But we should at least be able to verify if σ̃ is a valid pre-signature
generated w.r.t. the correct inputs. To verify this pre-signature σ̃ := (σ̃1, σ̃2), we again
rely on another property of dichotomic signatures, namely, verifiability. This property
says that there is an algorithm Vrfy′ for the dichotomic signature scheme such that

Vrfy(vk,m, σ) = Vrfy′(vk,m, σ1,OWF(σ2)).

We can now verify the pre-signature, by checking if

Vrfy′(vk,m, σ̃1,OWF(σ̃2) ·Y ) = 1.

Finally, the homomorphism of dichotomic signatures helps us realize the functionality
of pre-signature adaption to full signature given the witness y. To see this, given y, we
can compute σ2 as σ2 := σ̃2+y and set the full signature as σ := (σ̃1, σ2), and it is easy
to see that the verification of σ follows. It is also immediate to see the extraction of y
given σ and σ̃, as one can compute y := σ2 − σ̃2.

6.2 Definition of Dichotomic Signatures

Using this intuition of dichotomic signatures, we propose the following formal definition.

Definition 17 (Dichotomic Signature Scheme). Let OWF : DR → DR′ be a homomorphic
function. A signature scheme Σ = (KGen, Sign,Vrfy) with key space DK, message-space
DM, randomness space DR, and signature space Dσ1×DR is a dichotomic signature w.r.t.
the function OWF if the following holds:

• Decomposability. The signature σ consists of two parts σ = (σ1, σ2) that can effi-
ciently be computed by the algorithms Σ1 : DK × DM × DR′ → Dσ1 and Σ2 : DK ×
DM × Dσ1 × DR → DR such that Σ.Sign(sk,m; r) = (σ1, σ2) = (Σ1(sk,m;OWF(r))
,Σ2(sk,m, σ1; r)).
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• Verifiability. There exists an DPT algorithm Vrfy′ : DK ×DM ×Dσ1 ×DR′ → {0, 1}
such that the following holds:

Vrfy(vk,m, (σ1, σ2)) = Vrfy′(vk,m, σ1,OWF(σ2)) .

• Homomorphism. The computation of the algorithm Σ2 is homomorphic in the ran-
domness, that is, for all y ∈ DR

Σ2(sk,m, σ1; r) + y = Σ2(sk,m, σ1; r + y) .

For better readability, we write the homomorphisms with arithmetic operators for
additive groups DR. Yet, the definition holds for groups that have arbitrary arithmetic
operations.

6.3 Constructing Adaptor Signatures from Dichotomic Signa-
tures

We now construct adaptor signatures from dichotomic signatures in a black-box way.
In Section 8, we instantiate this generic construction with the BBS+, CL+, and Waters+

signature schemes, yielding the first natural adaptor signatures in the standard model.

Construction 1. Let OWF : DR → DR′ be a homomorphic function. Let Σ = (KGen, Sign,
Vrfy) be a dichotomic signature scheme with respect to the function OWF. Let Rel be the
canonical hard relation with auxiliary information for OWF. We define the adaptor sig-
nature scheme AS = (pSign,Adapt, pVrfy,Extract) in Figure 11.

pSign(sk,m, Y )

1 : if AuxVrfy(sk, Y, aux) = 0 return ⊥
2 : r ←$ DR

3 : σ1 := Σ1(sk,m;OWF(r) · Y )

4 : σ2 := Σ2(sk,m, σ1; r)

5 : return (σ1, σ2)

pVrfy(vk,m, Y, σ̃)

1 : if StmtVrfy(vk, Y, aux) = 0 return 0

2 : (σ1, σ2) := σ̃

3 : return Vrfy′(vk,m, σ1,OWF(σ2) · Y )

Adapt(vk, σ̃, y)

1 : (σ1, σ2) := σ̃

2 : σ̃2 = σ2 + y

3 : return (σ1, σ̃2)

Extract(vk, σ̃, σ, Y )

1 : (σ1, σ
′
2) := σ̃

2 : (σ1, σ2) := σ

3 : return σ2 − σ′
2

Figure 11: Dichotomic Adaptor Signature Construction. The statement verification
(highlighted) is only included if the construction should achieve pre-verify soundness.

We claim the security of Construction 1 in Theorem 4. The formal proof of The-
orem 4 requires a novel non-black-box proof technique that we introduce in Section 7.
Subsequently, we provide a formal proof of this theorem in Section 8.
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Theorem 4. Let OWF : DR → DR′ be a quasi-injective homomorphic one-way function,
and Rel be a canonical hard relation with auxiliary input for OWF. Let Σ be a dichotomic
signature scheme with respect to OWF and let AS be a dichotomic adaptor signature
scheme for both Σ and Rel as per Construction 1. If Σ is strongly unforgeable and has
a simulatable transparent reduction T from the SUF-CMA security of Σ to an underlying
hard problem Π, then AS achieves full extractability, unique extractability, and unlinka-
bility. If the membership of the statement in the language LRel can be checked efficiently,
Construction 1 achieves pre-verify soundness.

7 Transparent Reductions For Signatures

In this section, we introduce a novel non-black-box proof technique to prove the security
of dichotomic adaptor signatures (c.f. Construction 1). Recall that our goal is the con-
struction of an adaptor signature based on any dichotomic signature scheme. Ideally, we
would like to reduce the unforgeability of the adaptor signature scheme to the unforge-
ability of the signature scheme. However, as we explained in Section 2.3, this is generally
impossible, so we developed a new proof technique to show the security of our framework.
We call this technique transparent reduction.

7.1 Definition of Transparent Reductions

Intuitively, a transparent reduction follows a natural structure consisting of three parts:
an algorithm that computes a (simulated) public key, a signing interface, and a break
method (c.f. Fig. 12). The basic idea here is that these interfaces correspond to the
expected interfaces of the adversary in the unforgeability game. Thus, the reduction
can use the break algorithm on inputs the forgery (m∗, σ∗) of the adversary A, and
the internal state of the reduction to compute a solution sol for the hard problem Π.
Interestingly, we can exploit this structure non-black-box in subsequent proofs. To do so,
the security proof of the adaptor signatures exploits the code of the transparent reduction.
The main interesting aspect of this proof technique is that we can show a non-black-box
reduction from the full extractability of the adaptor signature scheme to the underlying
hard problem of the signature scheme by exploiting the transparent reduction of the given
signature scheme.

The invention of this novel proof technique is needed as the simulation of pre-signatures
in the full extractability game contradicts the strong unforgeability of the underlying sig-
nature scheme: Without the programmability of the RO, the reduction R against full
extractability has only access to a signing oracle and a public key. If we assume that R
can simulate a pre-signature for a message-statement pair (m,Y ) chosen by the adversary
in this setup, thenR can forge signatures directly: First, R simulates a pre-signature on a
known statement-witness pair (Y, y) and then adapts this pre-signature with a statement
y for Y . Note that this adapted pre-signature is computed w.r.t. a different randomness r
compared to any full signature output by the signing oracle. Otherwise, the reduction R
is capable of breaking the hardness of the relation by using the extract algorithm on a full
signature σ output by the oracle and a simulated pre-signature on the same message m,
a statement Y and the same randomness as used in σ. Transparent reductions solve this
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Figure 12: Visualization of a transparent reduction for non-interactive hard problems (in
the random oracle model).

issue by providing the reduction against full extractability access to a simulated signing
key.

We will define transparent reductions for interactive and non-interactive problems for
the standard and the random oracle model below.

Hard (Non-Interactive) Problems. Our formalization of hard non-interactive prob-
lems follows [FS10].

Definition 18 (Cryptographic Hard Problem). A non-interactive (cryptographic) hard
problem Π = (I, V ) consists of two efficient algorithms:

• inst← I(1λ). The instance generation algorithm takes as input the security param-

eter 1λ and outputs an instance inst.

• b← V (sol, inst). The input of the instance verification algorithms V ( sol, inst) is a
value sol as well as an instance inst of a (cryptographic) problem, and outputs a
decision bit.

We call the problem Π interactive if there exists a helping oracle O that takes as input a
string y and returns an answer x.

We define the hardness of Π in the following:

Definition 19 (Hardness of a Cryptographic Problem). Let A (resp. AO) be an efficient
algorithm that solves the (cryptographic) problem Π if the probability that A (resp. AO) on
input inst ← I(1λ) outputs sol′ such that V (sol′, inst) = 1, is non-negligible. We say that
the (non-interactive) (cryptographic) problem Π is hard if no efficient algorithm solves
it. In terms of concrete security, we say that A runs in time at most t (makes at most Q
adaptive queries to O) and solves the hard problem Π with probability ε.
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We provide two examples of hard (cryptographic) problems that are often used for
the security of signature schemes as well as the one-more discrete logarithm assumption
as an example of an interactive hard problem (see ??).

Transparent Reductions for (Non-Interactive) Hard Problems. A transparent
reduction is divided into several sub-algorithms: a simulated key-generation algorithm
SimKg, an interface SimSign to answer signing queries, and a break interface Break that
“converts” the forgery (m∗, σ∗) into a solution of the hard problem Π. If the reduc-
tion relies on the random oracle heuristic, then it also stores a list of query and answer
pairs. Intuitively, the simulated key-generation algorithm computes a simulated public
and private key-pair (simpk, simsk), which has the property that the public key is in-
distinguishable from the one of the honest key-generation algorithm. Furthermore, the
simulated private key is sufficient to answer signing queries. That is, there exists a possi-
bly stateful algorithm SimSign that receives simsk as input and computes signatures σ on
messages of A’s choice, which verify under the simulated public-key simpk. Finally, the
break algorithm receives as input simsk, the query and answer pairs Q of SimSign oracle
invocations, and the forgery (m∗σ∗). It outputs the solutions sol for Π.

In the following, we provide a formalization of transparent reductions and show in
the next sections that a) the security proofs of many signature schemes have transparent
reductions and b) how to make non-black-box use of the transparent reduction in our
security proof for adaptor signatures.

Definition 20 (Transparent Reduction). A transparent reduction T = (SimKg, SimSign,
Break) for a (non-interactive) hard problem Π = (I, V ) with black-box access to an
PPTadversary A consists of the following PPTalgorithms:

• ((simsk, simpk), pp)← SimKg(1λ, inst). The input to the simulated key-generation

algorithm SimKg(inst) (resp. SimKgO) is the security parameter 1λ, and an in-
stance inst of the hard problem Π. It outputs a key pair (simpk, simsk), and public
parameters pp, where simpk is a simulated public and simsk is a simulated private
key.

• σ ← SimSign(simsk,m). The signing algorithm SimSign takes as input a simulated
signing key simsk and some message m, it outputs a signature σ. We denote by
QSimSign = {(m1, σ1), . . . , (mq, σq)} the set of all query and answer pairs to SimSign
and by QO = {(y1, x1), . . . , (yq′ , xq′)} the query and answer pairs to the oracle O.
The same holds for SimSignO.

• sol← Break(simsk, QSimSign, (m
∗, σ∗), inst). The input of the breaking algorithm Break

(resp. BreakO) is a simulated private key simsk, the set of query/answer pairs to the
sign interface QSimSign = {(m1, σ1), . . . , (mq, σq)} (and the set QO = {(y1, x1), . . . ,
(yq′ , xq′)} of queries to O), a putative forgery (m∗, σ∗), and an instance inst of the
hard problem Π. It returns a putative solution sol.

The correctness of transparent reductions for non-interactive hard problems is defined
as follows. The definition for the interactive case follows analogously.
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Definition 21 (Correctness of Transparent Reductions). We say that the transparent
reduction T A

Π is correct if the following holds: Let inst ← I(1λ) be an instance of the
hard problem Π, (simsk, simpk) ← SimKg(1λ, inst) be the simulated key pair, QSimSign =
{(m1, σ1), . . . , (mq, σq)} the set of query/answer pair of A(simpk) to SimSign(simsk, ·),
and let (m∗, σ∗) the final output of A. If (m∗, q∗) ̸∈ QSimSign and Vrfy(simpk,m∗, σ∗) = 1,
then we call a reduction correct if and only if Pr[V (sol′, inst) = 1] ≥ ε, where sol′ ←
Break(simsk, QSimSign, (m

∗, σ∗), inst), ε is non-negligible, and the probability is taken over
the random choices of V , Break, SimKg and SimSign.

Transparent Reductions and the Random Oracle Model. Our formalization of
transparent reductions naturally carries over to reductions in the random oracle model [BR93]
that we define as follows.

Definition 22. A transparent reduction T = (SimKgH, SimSignH,BreakH) in the random
oracle model for some hard problem Π = (I, V ) with black-box access to an efficient
adversary A consists of efficient algorithms (SimKgH, SimSignH,BreakH) which are defined
analogously to Definition 20, and H is defined as follows:

• H. The reduction stores a list QH of input and output pairs (a, b), meaning that
H(a) = b. The interface H provides two modes: H(get, a) returns the value b if
(a, b) ∈ QH and ⊥, otherwise. The mode H(set, (a, b)) adds the entry (a, b) to QH

iff (a, ·) ̸∈ QH.

We assume that all algorithms have access to QH.

7.2 Simulatable Transparent Reductions for Dichotomic Signa-
tures

To prove the security of the resulting adaptor signatures, the underlying dichotomic sig-
nature scheme needs to be strongly unforgeable. Furthermore, we need a transparent
reduction T from the strong unforgeability to an underlying hard problem with an ad-
ditional property, which we call simulatability. Looking ahead, simulatability will allow
our security reduction to compute values that are indistinguishable from pre-signatures
for any efficient distinguisher by having as input a simulated secret key simsk rather than
a signing key sk. Even if pre-signatures are not in the scope of signature schemes, we can
use the structure of dichotomic signatures to define the simulatability notion by using
the functions Σ1 and Σ2.

Definition 23 (Simulatable Transparent Reductions for Dichotomic Signatures). Let
Σ = (KGen, Sign,Vrfy) be a dichotomic signature scheme based on the function OWF :
DR → DR′ and T = (SimKg, SimSign,Break) be a transparent reduction from the SUF-CMA
security of Σ to an underlying hard problem Π. We refer to T as a simulatable trans-
parent reduction for a canonical hard relation of OWF if the following holds: There is
an efficient algorithm Sim that on input a simulated secret key simsk ← SimKg(inst), a
message m ∈ DM and a image Y ∈ DR′ of the homomorphic function OWF outputs a
value σ̃, such that for any PPT distinguisher D and for each hard instance inst ∈ Π

|Pr
[
Exp1D(inst, 1

λ) = 1
]
− Pr

[
Exp0D(inst, 1

λ) = 1
]
| ≤ ν(λ)
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Exp0D(1
λ)

1 : (sk, vk)← Σ.KGen(1λ)

2 : b′ ← DO0(sk,·,·)(vk)

3 : return b′ == 0

O0(sk,m, Y )

1 : r ←$ DR

2 : σ1 := Σ1(sk,m;OWF(r) · Y )

3 : σ2 := Σ2(sk,m, σ1; r)

4 : return (σ1, σ2)

Exp1D(1
λ, inst)

1 : (simsk, simpk)← T .SimKg(1λ, inst)

2 : b′ ← DO1(simsk,·,·)(simpk)

3 : return b′ == 1

O1(simsk,m, Y )

1 : return Sim(simsk,m, Y )

Figure 13: The simulatability game for transparent reductions.

holds, where Fig. 13 shows the corresponding games and the probability is taken over the
random choices of all probabilistic algorithms.

Simulatable transparent reductions provide an additional oracle compared to the or-
acles used in signature schemes, namely the pre-signature oracle. The adversary having
access to this additional oracle raises the question of which signatures are suitable inputs
for the transparent reduction’s breaking algorithm. To answer this question, we define
fresh signatures. Simply put, we consider a signature fresh if it has not been obtained by
an oracle or using trivial transformations on oracle outputs. More formally:

Definition 24 (Fresh Signature). A signature σ is fresh if it is not output by an oracle.
If a pre-signature σ̃ = (σ̃1, σ̃2) for a statement Y is output by an oracle, we mark each
signature σ∗ = (σ∗

1, σ
∗
2) as non-fresh that satisfies σ∗

1 = σ̃1 and σ∗
2 − σ̃2 = y′ such that

OWF(y′) = Y .

8 Secure Dichotomic Adaptor Signatures

In this section, we show the security of dichotomic adaptor signatures (c.f. Fig. 11)
by proving extractability, unique extractability, unlinkability, and pre-verify soundness.
Afterward, we show how to build adaptor signatures from BBS+, CL+, and Waters+. To
show the broad applicability of our framework, we show that our framework also covers
ID-based signature schemes, which a previous work showed w.r.t. a weaker security model
in [Aum+21].

8.1 Proof of Security

We now show full extractability, unlinkability, unique extractability, and pre-verify sound-
ness in separate lemmas. We postpone the correctness proofs to Appendix C.

Lemma 1 (Extractability). Let OWF : DR → DR′ be a quasi-injective homomorphic one-
way function, and Rel be a canonical hard relation with auxiliary input for OWF. Let Σ be
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a dichotomic signature scheme with respect to OWF and let AS be a dichotomic adaptor
signature scheme for both Σ and Rel as per Fig. 11. If Σ is SUF-CMA secure and has a
simulatable transparent reduction T from the SUF-CMA security of Σ to an underlying
hard problem Π, then AS satisfies extractability (c.f. Definition 12).

Proof. Before we start with our proof, we first provide a high-level overview of how we
build a reduction from the extractability of AS to the hardness of the underlying hard
problem Π using the algorithms provided by the simulatable transparent reduction T .
The reduction R has as input the instance inst and simulates the game ExtA,AS to the
adversary A the following way. To provide a public key and a signing oracle to A,
the reduction R runs the algorithms SimKg and SimSign, which are provided by the
transparent reduction T . To provide a pre-signing oracle, R uses the simulatability
property of T . Having access to these oracles, the adversary A eventually outputs a
valid forgery, i.e., a message-signature pair (m∗, σ∗). Upon receiving such a forgery, the
reduction R runs the Break algorithm provided by the transparent reduction to compute
a solution of the inst.

Using this intuition, we now start the proof and show in a series of game hops that
we can indeed simulate the game Ext to A in an indistinguishable fashion using the
algorithms provided by the simulatable transparent reduction. Our game hops range
from the game G0, which equals the original Ext game, to the game G3, in which each
valid forgery provided by A can be used as input to the Break algorithm, such that Break
computes a solution for the instance inst.

Game G0: The first game G0 is the original ExtA,AS game. Since G0 simulates the ExtA,AS

game perfectly, it holds that Pr[ExtA,AS(λ) = 1] = Pr[G0(λ) = 1]. A formal description of
game G0 is given in Fig. 14.

Game G1: The second game G1 only differs from game G0 when it aborts in Line 5.
We call this event BreakRel. At an intuitive level, BreakRel occurs if the forgery of the
adversary allows breaking a challenge instance of the hard relation. This game hop
does not differ from ExtA,AS if the adversary returns an adapted pre-signature on a non-
challenge statement since the winning condition covers this already. It holds that

Pr[G1(λ) = 1] = Pr[G1(λ) = 1 ∧ BreakRel] + Pr[G1(λ) = 1 ∧ ¬BreakRel].

A formal description of game G1 is given in Fig. 14.

Claim 1. Let BreakRel be the event, whereby G1 aborts in Line 5. Then, the adversary A
found a signature forgery σ∗ that allows extracting a challenge witness using a previously
output pre-signature. If BreakRel happens, then we can build a reduction R that can break
the hardness of the hard relation Rel. Thus, Pr[G1(λ) = 1 ∧ BreakRel] occurs only with
negligible probability ν1(1

λ).

Proof of Claim 1. We prove Claim 1 with a reduction RRel that uses A from game G1 to
break the hardness of the relation Rel if BreakRel happens. When BreakRel happens, then
the forgery of A allows extracting a valid witness for a challenge statement Y ∈ Qstmt.
Such a forgery breaks the hardness of Rel since the challenge statements are honestly
computed, and the corresponding witnesses are not forwarded either to A or to the
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G0(λ)G1(λ)

1 : QSign,QpSign,Qstmt := ∅, (sk, vk)← KGen(1λ)

2 : (m∗, σ∗)← ASign(sk,·),pSign(sk,·,·),NewY(λ)(vk)

3 : if ∃(Y, σ̃) ∈ QpSign[m
∗] s.t. Y ∈ Qstmt

4 : ∧(Y,Extract(vk, σ̃, σ∗, Y )) ∈ Rel then

5 : abort

6 : assert Vrfy(vk,m, σ∗)

7 : assert m∗ /∈ QSign

8 : return ∀(Y, σ̃) ∈ QpSign[m
∗] : (Y,Extract(Y, σ̃, σ∗)) /∈ Rel

NewY(λ)

1 : (Y, y)← Rel.RGen(1λ); Qstmt
∪← Y ; return Y

Sign(sk,m)

1 : σ ← Σ.Sign(sk,m)

2 : QSign
∪← {m}

3 : return σ

pSign(sk,m, Y )

1 : σ̃ ← AS.pSign(sk,m, Y )

2 : return σ̃

Figure 14: Game G0(λ) and Game G1(λ) (highlighted parts in gray).

oracles provided to A. In addition, we can break the hardness of Rel even if A does not
win the game G0 after the event BreakRel happens, since the event already covers that
the extracted witness is valid. Upon input of a challenge statement Y ∗, the reduction
RRel computes a public and a secret key (sk, vk) ← KGen(Y ∗). We can assume that
the public key vk aligns with the challenge statement Y ∗ since the public parameters of
both algorithms can be encoded to the auxiliary information of Y ∗. The reduction RRel

provides vk to A and answers the pSign and Sign oracle queries of A using the signing key
sk. To answer the i-th query of the NewY oracle, the reduction first samples a random
element ri ←$ DR, stores ri and outputs Yi := OWF(ri) · Y ∗. Since the one-way function
OWF is homomorphic and ri is sampled uniformly at random, the statement Yi has the
right distribution. Eventually, A outputs a forgery (m∗, σ∗). If the event BreakRel occurs
with non-negligible probability (which we assume in Claim 1), there exists a pre-signature
σ̃i on a statement Yi, such that y := Extract(vk, σ̃, σ∗, Yi) is a valid witness for Yi. Since the
reduction RRel stores the rerandomization factor ri, it can compute y∗ = y− ri as a valid
witness for the challenge statement Y ∗. This reduction breaks the hardness of the hard
relation Rel, and thus, the event BreakRel happens only with negligible probability.

Game G2: In this game, we replace the key generation algorithm, the signing algorithm,
and the pre-signing algorithm with the corresponding simulated algorithms provided by
the simulatable transparent reduction T . We show game G2 in Figure 15.

Claim 2. By the simulatability of T , the difference between the games G1 and G2 is
negligible. This means, Pr[G1(λ) = 1] ≤ Pr[G2(λ) = 1] + ν2(1

λ).

Proof of Claim 2. We assume, by contradiction, that the difference between game G1
and game G2 is non-negligible. I.e., there exists a distinguisher A, that discovers the
gap between the games G1 and G2, with non-negligible probability ϵ. We then build
a reduction R that breaks the simulatability of the transparent reduction of Σ. The
reduction R obtains as input a verification key vk, where vk is either generated by KGen
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G2(λ, inst )

1 : QSign,QpSign := ∅
2 : (simsk, simpk)← T .SimKg(inst)

3 : (m∗, σ∗)← ASign( simsk ,·),pSign( simsk ,·,·),NewY(λ)( simpk )

4 : if ∃(Y, σ̃) ∈ QpSign[m
∗] s.t. Y ∈ Qstmt

5 : ∧(Y,Extract(vk, σ̃, σ∗, Y )) ∈ Rel

6 : abort

7 : assert Vrfy(simpk,m, σ∗)

8 : assert m∗ /∈ QSign

9 : return ∀(Y, σ̃) ∈ QpSign[m
∗] : (Y,Extract(Y, σ̃, σ∗)) /∈ Rel

NewY(λ)

1 : (Y, y)← RGen(1λ)

2 : return Y

Sign( simsk ,m)

1 : σ ← T .SimSign(simsk,m)

2 : QSign
∪← {m}

3 : return σ

pSign( simsk ,m, Y )

1 : σ̃ ← T .Sim(simsk,m, Y )

2 : QpSign[m]
∪← {Y, σ̃}

3 : return σ̃

Figure 15: The game G2(λ).

or by T .SimKg. Furthermore, R has access to an oracle O. R provides a pre-sign oracle
to its adversary by forwarding the request (m,Y ) of the adversary to its oracle. The sign
oracle is simulated by requesting (m,OWF(0)) to O. Since OWF is homomorphic and
quasi-injective, OWF(0) is the identity in the group DR′ , and hence the output (σ1, σ2) :=
Σ1(sk,m;OWF(r) · OWF(0)),Σ2(sk,m, σ1; r) = Σ1(sk,m;OWF(r)),Σ2(sk,m, σ1; r) which
is a normal signature on the message m. The NewY oracle has only public inputs and
hence is simulated trivially. If the bit b equals 0, then the reduction R simulated game G1
perfectly. Else, the reduction perfectly simulates game G2. Using this observation, we
are now in a situation where there exists a distinguisher A that discovers the gap between
G1 and G2 with non-negligible probability ϵ, and where the games G1 and G2 perfectly
match the experiments Exp0 and Exp1 from the simulatable of the transparent reduction.
Therefore, our reduction R can leverage this distinguisher to break the simulatability of
T with the same non-negligible probability ϵ by forwarding the distinguishers output.

Game G3: In this game, we output a solution to the instance inst of the hard problem
if the adversary outputs a valid forgery. Game G3 is depicted in Fig. 16. Between the
games G2 and G3, there is no difference in the view of the adversary. Yet, the game G3 is
a reduction from the strong unforgeability of Σ to its underlying hard problem.

Claim 3. If the adversary outputs a valid message-forgery pair (m∗, σ∗) for G2, this
message-forgery pair allows the transparent reductions breaking algorithm T .Break to com-
pute a solution for the instance inst of the underlying hard problem.

Proof of Claim 3. Alongside the simulated secret key simsk, the queue Q, and the in-
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G3(λ, inst )

1 : QSign,QpSign,Qstmt := ∅
2 : (simsk, simpk)← T .SimKg(inst)

3 : (m∗, σ∗)← ASign(simsk,·),pSign(simsk,·,·),NewY(λ)(simpk)

4 : if ∃(Y, σ̃) ∈ QpSign[m
∗] s.t. Y ∈ Qstmt

5 : ∧(Y,Extract(vk, σ̃, σ∗, Y )) ∈ Rel

6 : abort

7 : assert Vrfy(simpk,m, σ∗)

8 : assert m∗ /∈ QSign

9 : return T .Break(simsk,QSign ∪QpSign, (m
∗, σ∗), inst)

NewY(λ)

1 : (Y, y)← RGen(1λ)

2 : return Y

Sign(simsk,m)

1 : σ ← T .SimSign(simsk,m)

2 : QSign
∪← {m}

3 : return σ

pSign(simsk,m, Y )

1 : σ̃ ← T .Sim(simsk,m, Y )

2 : QpSign[m]
∪← {Y, σ̃}

3 : return σ̃

Figure 16: The game G3(λ, inst).

stance of the hard problem inst, the breaking algorithm expects a message-signature
forgery pair (m∗, σ∗) containing a fresh signature (meaning that was never returned by
the signing oracle before). This means, (m∗, σ∗) /∈ QSign. Since we simulate the pre-
signing oracle using the simulated secret key, we add all messages that were asked to the
pSign oracle to this queue. According to Lemma 22, a forgery signature on a message
m is fresh if it does not extract with any pre-signature on m. Since (m∗, σ∗) is a valid
forgery for game G2, by the winning condition of G2 it is also fresh. Consequently, the
message-signature pair (m∗, σ∗) is a valid forgery for the StrongSigForge game; thus, the
forgery is a sufficient input for T .Break.

We now use Claim 3 to conclude our proof. As G3 simulates StrongSigForge perfectly,
if it does not abort, we now have:

Pr[Ext(λ) = 1] ≤ Pr[StrongSigForge(λ) = 1] + ν1(1
λ) + ν2(1

λ).

We assumed that A wins Ext with non-negligible probability, and thus A also wins
StrongSigForge with non-negligible probability. This contradicts the SUF-CMA security
of Σ; thus, such an adversary can not exist.

Lemma 2 (Unique Extractability). Let OWF : DR → DR′ be a quasi-injective homomor-
phic one-way function, and Rel be a canonical hard relation with auxiliary input for OWF.
Let Σ be a dichotomic signature scheme with respect to OWF and let AS be a dichotomic
adaptor signature scheme for both Σ and Rel as per Construction 1. If Σ is SUF-CMA
secure and has a simulatable transparent reduction T from the SUF-CMA security of Σ to
an underlying hard problem Π, then AS satisfies unique extractability (c.f. Definition 13).
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Proof of Lemma 2. The proof of this lemma follows the structure of Lemma 1. By contra-
diction, we use the ability of any adversary breaking unique extractability to construct
a novel adversary that can break the hardness of the underlying hardness assumption
of the signature scheme Σ. To do so, we define a series of game hops where the first
game, G0 is the original UniqueExtractability game, and the last game allows breaking the
underlying hard instance of the strong unforgeability of Σ.

Game G0: The first game G0 is the original UniqueExtractability game. Since G0 perfectly
simulates the game UniqueExtractability, it holds that Pr[UniqueExtractability(λ) = 1] =
Pr[G0(λ) = 1]. A formal description of the game G0 is given in Fig. 17.

G0(λ)

1 : (vk, sk)← KGen(1λ)

2 : (m,Y, σ̃, σ, σ′)← ApSign(sk,·,·),Sign(sk,·)(vk)

3 : assert (σ ̸= σ′) ∧ Vrfy(vk,m, σ) ∧ Vrfy(vk,m, σ′)

4 : assert pVrfy(vk,m, Y, σ̃)

5 : y ← Extract(Y, σ̃, σ); y′ ← Extract(Y, σ̃, σ′)

6 : return (Y, y) ∈ Rel ∧ (Y, y′) ∈ Rel)

Sign(sk,m)

1 : σ ← Σ.Sign(sk,m)

2 : return σ

pSign(sk,m, Y )

1 : σ̃ ← AS.pSign(sk,m, Y )

2 : return σ̃

Figure 17: The first game G0(λ).

Game G1: In the second game, we replace the key generation algorithm, the signing
algorithm, and the pre-signing algorithm with the corresponding simulated algorithms
provided by the simulatable transparent reduction T . By the simulatability of T , the

G1(λ, inst)

1 : (simpk, simsk)← SimKg(inst)

2 : (m,Y, σ̃, σ, σ′)← ApSign( simsk ,·,·),Sign( simsk ,·)( simpk )

3 : assert (σ ̸= σ′) ∧ Vrfy( simpk ,m, σ) ∧ Vrfy( simpk ,m, σ′)

4 : assert pVrfy( simpk ,m, Y, σ̃)

5 : y ← Extract(Y, σ̃, σ); y′ ← Extract(Y, σ̃, σ′)

6 : return (Y, y) ∈ Rel ∧ (Y, y′) ∈ Rel)

pSign( simsk ,m, Y )

1 : σ̃ ← T .SimPSign(simsk,m, Y )

2 : return σ̃

Sign( simsk ,m)

1 : σ ← T .SimSign(simsk,m)

2 : return σ

Figure 18: The second game G1(λ).

difference between the games is negligible (c.f. Proof of Claim 2) and we have Pr[G0 = 1] ≤
Pr[G1 = 1] + ν1(1

λ). We provide a formal description of the game G1 in Fig. 18.
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Claim 4. If the adversary wins the game G1 with non-negligible probability, the adver-
saries output (m,Y, σ̃, σ, σ′) contains a fresh signature with non-negligible probability.

Proof of Claim 4. To prove the claim, we first observe that the pre-signature and two
signatures must follow a certain structure to fulfill the winning condition of game G1 (the
winning condition of unique extractability): The winning condition enforces, that

y ← Extract(Y, σ̃, σ); y′ ← Extract(Y, σ̃, σ′) and (Y, y) ∈ Rel ∧ (Y, y′) ∈ Rel

hold. This fact allows two observations. First, since the relation of Construction 1 is
quasi-injective, we know that y = y′ with overwhelming probability. Second, the extract
algorithm Extract on input a pre-signature σ̃ = (σ̃1, σ̃2) and a signature σ = (σ1, σ2) of
Construction 1 computes y = σ2 − σ̃2. Since y = y′ with overwhelming probability, this
implies that with overwhelming probability

σ2 = σ̃2 + y = σ′
2.

Next, we show that it is negligible that the oracles of the reduction output at most
two values that have the same second component (·, σ2). Each time A invokes an oracle,
the oracle first samples a fresh random value r and computes the functions Σ1 and Σ2

afterward. The probability that two invocations of the oracle sample have the same
random value r is negligible. Yet, if the oracle does not sample the same random value r,
the output of the oracle differs in the second component σ2 since the dichotomic signature
has a homomorphic property requiring

Σ2(sk,m, r + x) = Σ2(sk,m, r) + x.

Henceforth, if r ̸= r′, we have r = r′ + x for a non-zero x, which leads to

Σ2(sk,m, r
′) = Σ2(sk,m, r + x) = Σ2(sk,m, r) + x ̸= Σ2(sk,m, r),

since Σ2 is a deterministic function. Therefore, the probability that σ2 = σ′
2 and both

values are output by the oracles of the reduction is negligible.
Putting things together, the adversary has to output three values that share the same

second component σ2 (or σ2+ y in case of the pre-signature) but are unequal. While it is
possible to output two signatures that share the same second component - via adapting
- and were output by oracles before, we have shown that it is negligible that an oracle
outputs a third such signature. Therefore, at least one of the three output values yields
a fresh signature.

Game G2: In the third game, we replace the output of G1 by the break algorithm of T .
Due to Claim 4, this G2 finds a solution for inst, whenever the adversary outputs a valid
forgery. Game G2 simulates StrongSigForge perfectly and the view of A does not change
between the games G1 and G2, hence Pr[G1] = 1 = Pr[G2] = 1. Game G2 is depicted in
Fig. 19. This series of game hops concludes the proof. As G2 simulates StrongSigForge
perfectly, it holds:

Pr[UniqueExtractability(λ) = 1] ≤ Pr[StrongSigForge(λ) = 1] + ν1(1
λ).

We assumed by contradiction that A wins UniqueExtractability with non-negligible prob-
ability, and thus A wins StrongSigForge with non-negligible probability. This contradicts
the SUF-CMA security of Σ. Hence, no such an adversary can exist.
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G2(λ, inst)

1 : (simpk, simsk)← SimKg(inst)

2 : (m,Y, σ̃, σ, σ′)← ApSign(simsk,·,·),Sign(simsk,·)(simpk)

3 : assert (σ ̸= σ′) ∧ Vrfy(simpk,m, σ) ∧ Vrfy(simpk,m, σ′)

4 : assert pVrfy(simpk,m, Y, σ̃)

5 : y ← Extract(Y, σ̃, σ); y′ ← Extract(Y, σ̃, σ′)

6 : return T .Break(simsk,QSign ∪QpSign, (m
∗, σ∗), inst)

pSign(simsk,m, Y )

1 : σ̃ ← T .SimPSign(simsk,m, Y )

2 : QpSign[m]
∪← {Y, σ̃}

3 : return σ̃

Sign(simsk,m)

1 : σ ← T .SimSign(simsk,m)

2 : QSign[m]
∪← {σ}

3 : return σ

Figure 19: The second game G2(λ).

Lemma 3 (Unlinkability). Let OWF : DR → DR′ be a homomorphic one-way func-
tion, and Rel be a canonical hard relation with auxiliary input for OWF. Let Σ be a
dichotomic signature scheme with respect to OWF and let AS be a dichotomic adaptor
signature scheme for both Σ and Rel as per Construction 1. Then, AS is unlinkable as
for Definition 14.

Proof of Lemma 3. Lemma 3 follows directly by Lemma 22.

Lemma 4 (Pre-Verify Soundness). Let OWF : DR → DR′ be a homomorphic one-way
function, and Rel be a canonical hard relation with auxiliary input for OWF. If the algo-
rithm StmtVrfy can check the membership of the statement in the language LRel efficiently,
Construction 1 achieves statistical pre-verify soundness (c.f. Definition 16).

Proof of Lemma 4. If the algorithm StmtVrfy checks the language membership of a state-
ment Y efficiently, then the pre-verification algorithm of Construction 1 returns 0 for all
statements which are not in the language of the relation. Therefore, Construction 1
achieves statistical pre-verify soundness.

8.2 Adaptor Signatures from BBS+

This section shows that the BBS+ signature scheme [BBS04; ASM06; CDL16b] achieves
all conditions required for Theorem 4. The BBS+ signature scheme is pairing-based and
provably secure in the standard model, assuming the hardness of the q−SDH assump-
tion [BB04]. Below, we define the q−SDH assumption and the BBS+ signature scheme.

Let G1, G2, and Gt be three cyclic groups of prime order p. Let g0 be a generator
of G1 and h0 be a generator of G2, such that g0 = ψ(h0) for an efficient isomorphism
ψ : G2 → G1 and let ẽ be an efficiently computable bilinear map ẽ : G1 ×G2 → Gt.

Definition 25 (q-Strong Diffie-Hellman Problem). The q−Strong Diffie-Hellman (q-

SDH) problem in (G1,G2) is defined as follows: On input a (q+2)-tuple (g0, h0, h
x
0 , h

(x2)
0 , · · · ,
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h
(xq)
0 ) ∈ G1 ×Gq+1

2 , where as above g0 = ψ(h0), output a pair (c, g
1

x+c

0 ) where c ∈ Z∗
p. An

algorithm A has advantage ϵ in solving the q-SDH problem in (G1,G2) if

Pr

[
A(g0, h0, hx0 , h(x

2)
0 , · · · , h(xq)

0 ) = (c, g
1

x+c

0 )

]
≥ ϵ

where the probability is taken over the random choice of the generator h0 ∈ G2 with
g0 = ψ(h0), the random choice of x ∈ Z∗

p, and the random bits consumed by A.
Based on the strong Diffie-Hellman problem, we now define the strong Diffie-Hellmann

assumption.

Definition 26 (q-Strong Diffie-Hellman Assumption). We say that the (q, t, ϵ)-SDH as-
sumption holds in (G1,G2) if no t-time algorithm has advantage at least ϵ in solving the
q-SDH problem in (G1,G2).

The work of Boneh and Boyen [BB04] proves a lower bound on the complexity of the
q-SDH problem in a generic group according to Shoup [Sho97].

Definition 27 (BBS+ Signature Scheme). Let λ ∈ N be the security parameter, the
BBS+ signature scheme consists of the following algorithms:
pp← Pgen(1λ). The public parameter generation algorithm chooses g0, g1, · · · , gL+1 ∈ G1

which are all generators of G1 and h0 which is a generator of G2. The elements gi
and hi := ψ−1(gi) are chosen so that the relative discrete logarithm of the generators is
unknown.
KGen(1λ). The key generation algorithm randomly chooses sk ∈ Z∗

p and computes vk = hsk0 .
The secret key is sk, and the public key is vk.
Sign(sk,m0, · · · ,mL). To sign a tuple (m1, · · · ,mL) ∈ Z∗

p of messages, the signing al-
gorithm chooses a value e ∈ Z∗

p and a random number r. It then computes A =

[g0 · gr1 · gm1
2 · · · gmL

L+1]
1

e+sk . It outputs the signature σ := (A, e, r).
Vrfy(vk, σ,m). To verify a signature (A, e, r) on a message tuple (m1, . . . ,mL), the veri-
fication algorithm checks, if ẽ(A, vk · he0) = ẽ(g0 · gr1 · gm1

2 · · · gmL
L+1, h0).

Applying Theorem 4 to BBS+. The following lemmas show that BBS+ is a di-
chotomic signature scheme, and its strong unforgeability can be proven using a simulat-
able transparent reduction. Furthermore, we show the existence of an efficient statement
verification algorithm if the group G1 has efficient membership checking.

Lemma 5. The BBS+ signature scheme is a dichotomic signature scheme w.r.t the
homomorphic function OWF : y ∈ Zp → gy1 ∈ G1 in accordance with Definition 17.

Proof of Lemma 5. Dichotomic signature schemes are defined with respect to a homo-
morphic one-way function OWF. The provided function OWF is homomorphic, since
gx+y
1 = gx1 · gy1 . We now show that BBS+ is a dichotomic signature scheme w.r.t. this
homomorphic function. Therefore, we show decomposability, verifiability, and homomor-
phism separately. Decomposability follows through the definitions of the algorithms Σ1

and Σ2. For a signature σ := (A, e, r), we set

Σ1(sk,m;OWF(r)) := (A, e) = ([g0 · gr1 · gm1
2 · · · gmL

L+1]
1

e+sk , e)
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and Σ2(sk,m, σ1; r) := r. The function Σ1 can be computed on the inputs sk, (m1, . . . ,mL),
OWF(r), and Σ2 with the input r, so decomposability is achieved.Verifiability holds since

the verification equation

ẽ(A, vk · he0) = ẽ(g0 · gr1 · gm1
2 · · · gmL

L+1, h0)

can be checked using the inputs A, e, gr1. The function Σ2 is homomorphic, since Σ2(sk,m,
σ1; r) := r, and hence, Σ2(sk,m, σ1; r) + y = Σ2(sk,m, σ1; r + y).

Lemma 6. If the group G1 has efficient membership testing, then there exists an efficient
algorithm StmtVrfy that, on input (vk, Y, aux), can decide if a statement Y is an element
of the image of OWF.

Proof. The function OWF is injective and maps from Zp to G1. Both of these groups
have order p. Hence, OWF is an isomorphism between the groups G1 and Zp. Hence,
each group element is a valid statement. Since the group G1 has efficient membership
testing, the algorithm StmtVrfy can return whatever the membership testing algorithm
output. If the algorithm StmtVrfy outputs 1, Y is an element of the image of OWF and
hence is a valid statement.

Lemma 7. The BBS+ signature scheme is strongly unforgeable against an adaptively
chosen message attack under the q-SDH assumption. This strong unforgeability can be
proven using a transparent reduction.

Proof of Lemma 7. The proof of existential unforgeability is already given in the work
of [ASM06]. Without changing the proof, we add some arguments as to why this proof
also shows strong unforgeability. Moreover, we match the main steps of the proof to
the interfaces of a transparent reduction. For this proof, we assume there exists an
adversary A against the strong unforgeability of BBS+ and a reduction R that uses
A to solve the q-SDH problem. We, furthermore, assume the adversary A makes q
signature queries. The reduction R has as input an instance of the q-SDH problem,

namely (g0, h0, h
x
0 , h

(x2)
0 , · · · , h(xq)

0 ) ∈ G1 × Gq+1
2 . Applying the technique of Boneh and

Boyen in the proof of Lemma 3.2 in [BB04], R obtains generators g0, h0 of G1 and G2

and a public key vk = hx0 . Furthermore, R gets q − 1 SDH pairs (Bi, ei), such that
ẽ(Bi, vkh

ei
0 ) = ẽ(g0, h0) for each i. Due to the technique of the same lemma, any new

SDH pair (B, e) besides these q − 1 pairs leads to the solution of the original q − SDH
problem. We now show how the reduction answers the q signature queries. R randomly

selects e∗, a∗, k∗ ←$ Z∗
p and computes h1 = [(vk·he∗0 )k

∗ ·h−1
0 ]1/a

∗
. Note that h1 = h

(e∗+x)k∗−1
a∗

0 .
For j = 2 · · ·L + 1, where L is the maximum length of the block of messages, randomly
select µj ←$ Z∗

p and compute hj = h
µj

1 . Furthermore, R samples a random number
1 ≤ i∗ ≤ q. This computations on input a instance of the q-SDH problem lead to the
system parameters (g0, h0, h1, · · · , hL+1), the simulated public key simpk = hx0 and the
simulated secret key simsk = (e∗, i∗, a∗, k∗, (B1, e1), · · · , (Bq−1, eq−1), µ2, · · · , µL+2). We
identify these computations with the transparent reduction’s simulated key generation
algorithm SimKg. We identify the i∗-th query as query ∗. We suppose the message block
to be signed for the i−th query is (m1,i, · · · ,mli,i) such that li ≤ L. For the q−1 signature
queries other than query ∗, R answers by using the q− 1 SDH pairs (Bi, ei) as follows. It
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randomly selects ri ←$ Z∗
p and computes ai = ri + ti, where ti = m1,iµ2 + · · ·+mli,iµli+1.

We note, that due to the construction of hi = hµi
1 , g

m1,i

2 · · · gmli
,i

li+1 = gti1 . Afterwards,

R computes Ai = [g0g
ai
1 ]

1
ei+sk and returns the signature for the i-th query as (Ai, ei, ri).

Using the simulated secret key simsk, this value Ai can be computed without knowing
the real secret key sk by evaluating

Ai = [g0g
ai
1 ]

1
ei+sk = Big

ai
sk+ei
1

= Bi[g
aik

∗(e∗+sk)−ai
(sk+ei)a

∗

0 ]

= B
(1− ai

a∗ )

i ([g
aik

∗
a∗

0 ]
(1− ei−e∗

ei+sk
)
)

= (B
(1− ai

a∗−
(ei−e∗)aik

∗
a∗ )

i )(g
aik

∗
a∗

0 ).

For the query ∗, the reduction chooses r∗, such that r∗ + ti = a∗. Afterwards, it
computes A∗ = gk

∗
0 and returns (A∗, e∗, r∗) as signature. We identify these computations

with the simulated signing algorithm of a transparent reduction that on input a messagem
and the simulated signing key simsk outputs simulated signatures. Finally, the adversary
A outputs a forged signature σ′ := (A′, e′, r′) on a message (m′

1, · · · ,m′
l′). We now show

how to use this forgery to break the instance of the q-SDH problem. This description
matches the breaking algorithm of a transparent reduction. For the forgery σ′, there are
three possibilities:

• The value e′ is distinct from all previous values e that were output by the reduction.

• The value e′ corresponds to some previous value ei and the value A′ matches the
value Ai.

• The value e′ corresponds to some previous value ei and the value A′ does not match
the value Ai.

We show how to break the q-SDH problem for each case separately.

• Case I [e′ /∈ ei, e∗]: Denote y = r′ +m′
1µ2 + · · ·+m′

l′µl′+1. The reduction computes

B′ = g
1

e′+sk

0 = [A′g
−k∗y
a∗

0 ]
a∗

a∗−y−k∗y(e′−e∗

and outputs (B′, e′). Since e′ /∈ ei, e∗, this is a new SDH pair.

• Case II [e′ = ei and A′ = Ai or e
′ = e∗ and A′ = A∗: This happens only if the

adversary can compute the discrete logarithms of two of the his. This happens only
with negligible probability. If m′ = mi or m

′ = m∗, this is not a valid forgery, since
then (A′, e′, r′) = (Ai, ei, ri), or (A

′, e′, r′) = (A∗, e∗, r∗).

• Case III [e′ ∈ ei, e
∗ and A′ ̸= Ai or A

′ ̸= A∗: With probability 1
q
, it holds, that

e′ = e∗. We define y as in Case I. The reduction outputs the new pair (B∗, e∗),
where

B∗ = g
1

e∗+sk

0 = [A′g
−k∗y
a∗

0 ]
a∗

a∗−y .

This is a new SDH tuple, as the value e∗ was never part of an input-SDH tuple.
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This breaking algorithm has success probability of ϵ/q, where ϵ is the success probability
of the adversary A. Therefore, the reduction R can break the q-SDH assumption with
non-negligible probability whenever an efficient adversary against the BBS+ signature
scheme exists that has a non-negligible advantage.

Lemma 8. Let g1 be a generator of G1, and let the values C1, . . . , CQ ∈ G1 be randomly
distributed. Let Rel be a hard relation with publicly decideable auxiliary information w.r.t
the language LRel := {(Y, aux, y)|y ∈ Z∗

p;Y := gy1 ; aux := (Cy
1 , . . . , C

y
Q)}. The transparent

reduction of the SUF-CMA security of the BBS+ signature scheme is simulatable for Rel
in accordance with Definition 23.

Proof of Lemma 8. We update the simulated key generation algorithm of the transparent
reduction to output the public parameters of the hard relation. These are (g1, C1, . . . , CQ),
where g1 is the same element used for the signature scheme. The values C1, . . . CQ are
computed the following way: The reduction samples Q random values ζ1, . . . ζQ ←$ Z∗

p

and computes Ci = Bζi
i for 1 ≤ i ≤ q and i ̸= i∗. All other values Cj are computed via

g
ζj
0 . All the values Ck are distributed randomly. and hence have the same distribution
as in an honest execution. Therefore, with this modification, we still have a transparent
reduction. Now we have to provide the algorithm Sim: For the pre-signature query on
input a message m, a statement Y , and the auxiliary information aux, the reduction
R checks the auxiliary information using AuxVrfy. The aux value can be checked by
verifying the equation ẽ(Y, ψ−1(Ci) = ẽ(g1, ψ

−1(auxi)). Afterward, the reduction runs the
simulated signing algorithm SimSign, such that the current signing index i ̸= i∗ to obtain
a simulated signature σi = (Ai, ei, ri). This can be done by skipping i∗ for pre-signatures
but using it for normal signatures afterward. The reduction modifies this value Ai to

A′
i := Ai · g

y
ei+sk

1 = [g0 · gr+y
1 · gm1

2 · · · gmL
L+1]

1
ei+sk . This computation is possible since the R

knows the auxiliary value auxi = Cy
i = Bζi·y

i = g
ζi·y
ei+sk

0 . Using the identity h1 = h
(e∗+x)k∗−1

a∗
0 ,

R can compute

C
1
ζi
· (e

∗+x)k∗−1
a∗

i = g
ζi·y
ei+sk

· 1
ζi
· (e

∗+x)k∗−1
a∗

0 = g
ζi·y
ei+sk

· 1
ζi

1 = g
y

ei+sk

1 .

By the construction, the values (A′
i, ei, ri) are a valid pre-signature for the message m

and the statement Y . Furthermore, this pre-signature is identically distributed to non-
simulated pre-signatures, and hence, the transparent reduction achieves simulatability
using the algorithm Sim.

8.3 Adaptor Signatures from Partitioned Signatures

The work of Boneh, Shen, and Waters [BSW06] provides a compiler, which we refer to
as BSW , that transforms partitioned signatures that achieve existential unforgeability
into dichotomic signatures that achieve strong unforgeability. We define partitioned sig-
natures in this section and show that the output signatures of the BSW compiler have a
simulatable transparent reduction. A famous partitioned signature is the Waters signa-
ture [Wat05]. Using the BSW compiler, we obtainWaters+: a strong, unforgeable version
of the Waters signature scheme. As a result of Section 8.1, Waters+ can be transformed
into an adaptor signature scheme using Construction 1.
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Definition 28 (Partitioned Signatures [BSW06]). We say that a signature scheme Σ =
(KGen, Sign,Vrfy) is partitioned, if it satisfies two properties:
Decomposition: The signing algorithm Sign can be broken into two deterministic algo-
rithms F1 and F2 so that a signature σ = (σ1, σ2) on a message m using the singing key
sk is computed as:

r ←$ DR;σ ← (F1(sk,m; r), F2(sk; r))

Injectivity: Given a message m and a σ2, there is at most one σ1 so that (σ1, σ2) verifies
as a valid signature, i.e. Vrfy(vk,m, (σ1, σ2) = 1.

Based on partitioned signatures, Boneh, Shen, and Waters provide a compiler to
obtain new signature schemes.

Construction 2 (The BSW Signature Compiler). Let Σ = (KGen, Sign,Vrfy) be a par-
titioned signature scheme where the signing algorithm can be decomposed into the two
functions F1 and F2. Let G be a group of prime order p and let H = {H(k, ·)} be
collision-resistant hash function family that maps elements into the group Zp. The Boneh-
Shen-Waters transformation transforms this signature scheme Σ into a novel signature
scheme Σ′ as depicted in Fig. 20.

KGen(λ)

1 : g ←$ G // generator of G

2 : h←$ G // generator of G

3 : k ←$ DK // a key for H

4 : (vk, sk)← KGen(λ)

5 : vk′ ← (vk, g, h, k)

6 : return (vk′, sk)

Sign′(sk′,m; s)

1 : r ←$ DR

2 : σ2 ← F2(sk; r)

3 : t← H(k,m||σ2) ∈ Zp

4 : m′ ← gths ∈ G
5 : σ1 ← F1(sk,m

′; r)

6 : return (σ1, σ2, s)

Vrfy′(vk′,m, σ)

1 : (σ1, σ2, σ3)← σ

2 : t̃← H(k,m||σ2) ∈ Zp

3 : m̃← gt̃hσ3

4 : return Vrfy (vk, m̃, (σ1, σ2))

Figure 20: The BSW transformation [BSW06].

Partitioned signatures are not necessarily dichotomic since, in general, it is impossible
to compute F1 using as input OWF(r) instead of r. Furthermore, the CL+ signature
scheme is dichotomic (c.f. Lemma 13), but is not a partitioned signature, as for a fixed
σ2 := r, there exist multiple values v, e such that ve ≡ am · br · c mod n. However, when
we apply the BSW compiler to partitioned signatures, the output signature is indeed
dichotomic, as we show in Lemma 9.

Applying Theorem 4 to BSW . We now show that the output of the BSW com-
piler yields a strongly unforgeable dichotomic signature with a simulatable transparent
reduction.

Lemma 9. The BSW signature compiler (c.f. Construction 2) yields a dichotomic
signature scheme w.r.t. the homomorphic function OWF : y ∈ DR → hy ∈ G, where
h ∈ vk′.
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Proof of Lemma 9. The function OWF is a DLog function and hence homomorphic. Since
we can assume that |DR| = |G|, and h is a generator of G, this function is also injective.
We now show that BSW is a dichotomic signature scheme w.r.t. OWF. Therefore,
we show decomposability, verifiability, and homomorphism separately. Note that the
BSW construction uses two random elements, namely r and s, and we use s to show
decomposability. Decomposability follows through the definitions of the algorithms Σ1

and Σ2: For a signature σ := (σ′, σ′′, s), we set

σ1 := Σ1(sk,m;OWF(s)) = (σ′, σ′′) =
(
F1(sk, g

H(k,m||F2(sk,r)) · OWF(s); r), F2(sk; r)
)
,

and Σ2(sk,m, σ1; s) := s. The function Σ1 can be computed on the inputs sk,m;OWF(s),
and Σ2 using the input s, so decomposability is achieved. Verifiability holds since the ver-
ify equation parses σ into σ1 = (σ′, σ′′) and σ2 = s. It afterwards only uses hs = OWF(σ2)
to verify the signature. BSW is homomorphic, since σ2+y = s+y = Σ2(sk,m; s+y).

Lemma 10. If the group G has efficient membership testing, then there exists an efficient
algorithm StmtVrfy that, on input (vk, Y, aux), can decide if a statement Y is an element
of the image of OWF.

Proof. This proof follows the argument of the proof of Lemma 14.

Proposition 4 (Theorem 1 from [BSW06]). Let Σ be a signature scheme that is (t, q, ϵ/3-
existentially unforgeable, let G be a group in which the (t, ϵ/3)-DLog assumption holds
and let H be (t, ϵ/3)-collision-resistent. Then the signature scheme Σ′ that is built by
Construction 2 is (t, q, ϵ)-strongly existentially unforgeable (SUF-CMA secure).

Lemma 11. The strong unforgeability of Proposition 4 can be proven using a transparent
reduction.

Proof of Lemma 11. In this proof, we recite the main part of the proof of Theorem 1 in
[BSW06]. This means we elaborate on how the reduction behaves if a so-called Type III
forger tries to break strong unforgeability. We do not consider the other cases in this
proof, since the reductions against the Type II forger and the Type I forger reduce the
hardness of the strong unforgeability to the collision-resistance of the hash function H
and the hardness of the DLog assumption. Therefore, these reductions have access to the
signing key sk′, and hence, these reductions are trivially transparent. We refer the reader
to [BSW06] for a full proof of strong unforgeability.

The reduction for a Type III forger has an underlying hardness assumption of the
existential unforgeability of the input signature scheme. This is an interactive hard-
ness assumption. For the proof, we assume there exists a forger A that can ask for
signatures on the messages m1, . . . ,mq and learns signatures σi = (σ′

i, σ
′′
i , si) on these

messages from the reduction. Let ti = H(k,mi||σ′′
i ), and m

′
i = gtihsi for 1 ≤ i ≤ q. Let

((m∗, σ∗ = (σ′∗, σ′′∗, s∗)) be the forgery produced by A. Let t∗ = H(k,m||σ′′∗) and let
m′∗ = gt

∗
hs

∗
. A Type III forger is a forger for which m′∗ ̸= m′

i ∀1 ≤ i ≤ q.
Suppose A is a Type III forger. We construct a simulator B that breaks the existential

unforgeability of Σ. B receives as input a public key vk of Σ. B runs A as follows: To
compute the simulated public key simpk, B samples a random generator g ∈ G and a
random number a ∈ Z∗

p. It sets h := ga. Then it selects a hash key k ∈ DK uniformly at
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random and provides the public key vk′ := (vk, g, h, k) to A. We identify this procedure as
simulated key generation SimKg with a simulated public key simpk = vk′ and simulated
secret key simsk = a. To answer signature queries, on a message m, the simulator B
samples ω ←$ Zp uniformly at random and setsm′ = gω. Then B queries its own signature
oracle for a signature on the message m′ and learns (σ′, σ′′). To modify this signature to
a valid signature for Σ′, B computes t← H(k,m||σ2) and s = (ω − t)/a. It then returns
(σ1, σ2, s) to A. This is a valid signature on the message m, since m′ = gω = gas+t =
gths and s is uniform in Zp. We refer to this signing protocol as the simulated signing
algorithm SimSign. When the forger A outputs its forgery (m∗, (σ′∗, σ′′∗, s∗)), B outputs
(m′∗, (σ′∗, σ′′∗)) and breaks the EUF-CMA security of Σ, which is the underlying hardness
assumption. This is the Break algorithm; hence, this reduction is transparent.

Lemma 12. The transparent reduction of the SUF-CMA security of the BBS+ signature
scheme is simulatable (c.f. Definition 23) for the relation OWF : y ∈ DR → hy ∈ G
with empty auxiliary information. The element h is part of the signer’s public key (c.f.
Construction 2).

Proof of Lemma 12. To prove simulatability, we have to show how the simulator B in the
proof of Lemma 11 can successfully simulate pre-sign queries on input a message m and
a statement Y = hy. B does this the following way: It first samples a random exponent
ω and computes m′ = gω ·Y . Then it proceeds like in the SimSign algorithm by querying
a signature on m′ and computing t ← H(k,m||σ2) and s = (ω − t)/a. This is a valid
pre-signature, since m′ = gω · Y = gas+t+ay = gthshy.

Waters+ Adaptor Signatures. The work of Boneh, Shen, and Waters [BSW06] shows
that the Waters signature scheme is existentially unforgeable and partitioned. Hence, we
can obtain Waters+ by applying the Waters signature to the BSW compiler. The Waters
signature scheme is based on the CDH assumption without using random oracles. This
leads us to the first secure adaptor signature scheme based on the CDH assumption. We
show the structure of the Waters signature scheme in Fig. 21 and refer the reader to the
work of Boneh, Shen, and Waters [BSW06] for formal proofs of partition and existential
unforgeability.

8.4 Adaptor Sigantures from CL+

Our third example of a dichotomic adaptor signature scheme in the standard model is the
Camenisch-Lysyanskaya (CL) signature scheme [CL03] that is provably secure assuming
the hardness of the strong RSA assumption. We define a slightly modified version of the
CL scheme that we call CL+. We have to modify the CL signature scheme since our secu-
rity analysis (c.f. Section 8.1) relies on the SUF-CMA security of the underlying signature
scheme. Still, the definition of the CL signature scheme, as provided in [CL03] achieves
only EUF-CMA security. CL+ has slightly tuned parameters compared to the original
CL scheme. In addition, we define the CL+ scheme over the signed quadratic residues
QR+

n [HK09] instead of the quadratic residues QRn. The signed quadratic residues behave
similarly compared to the quadratic residues but allow for efficient group membership
checking. Looking ahead, this will guarantee pre-verify soundness for the CL+ adaptor
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KGen(λ)

1 : g ←$ G // a generator of G

2 : α←$ Zp

3 : g1 := gα

4 : g2, u
′, u1, . . . , un ←$ G

5 : U := (u1, . . . , un)

6 : vk← (g, g1, g2, u
′, U)

7 : sk← gα2

8 : return (vk, sk)

Sign(sk,m)

1 : σ1 ← sk ·
(
u′

n∏

i=1

umi
i

)r

∈ G

2 : σ2 ← gr ∈ G
3 : return (σ1, σ2)

Vrfy(vk,m, σ)

1 : (σ1, σ2)← σ

2 : b = e(σ1, g)
?
= e

(
σ2, u

′
n∏

i=1

umi
i

)
· e(g1, g2)

3 : return b

Figure 21: The Waters signature scheme [Wat05; BSW06].

signatures. By QR+
n ⊆ Z∗

n we denote the set of quadratic residues modulo n and postpone
the remaining number-theoretic basics of CL+ to Appendix B.1.

Definition 29 (Modified Camenisch Lysyanskaya Signatures CL+). Let λ ∈ N be the
security parameter, ℓm, ℓn, ℓr ∈ N. The Camenisch Lysyanskaya signature scheme for the
message space DM = {0, 1}ℓm consists of the following algorithms:
pp← Pgen(1λ). The public parameter generation algorithm chooses a special RSA mod-
ulus n = pq, such that q and q are safe primes, i.e., p = 2p′ + 1, q = 2q′ + 1 for primes
p′ and q′, and n is a Blum integer, i.e. n ≡ 3 mod 4. In addition, the primes p and q
have the lengths ℓn = 2λ. In addition, the key generation algorithm samples a generator
u of QR+

n .
(sk, vk)← KGen(1λ). The key generation algorithm chooses a, b, c ∈ QR+

n uniformly at
random such that there exists an s ∈ Z∗

n, such that us ≡ b mod n. It outputs the public
key vk := (n, a, b, c) and the secret key sk := (p, s).
σ ← Sign(sk,m). The signing algorithm chooses a prime number e of length ℓe ≥ ℓr + 3,
and a random number r of length ℓr = ℓn+ℓm+ l where l is a security parameter. Finally,
it computes a v such that ve ≡ ambrc mod n. It returns the triple σ := (e, v, r).
b← Vrfy(vk,m, σ). The verification algorithm verifies that the triple (e, v, r) is a signature

m ∈ DM by checking that ve ≡ ambrc mod n and checking that 2ℓe > e > 2ℓe−1 and that
r < 2ℓr .

Modifications of CL+. The definition of CL+ has modifications compared to the orig-
inal CL signature scheme. Firstly, the size of ℓe is increased from ℓe ≥ lm + 2 to
ℓe ≥ lr + 3 = ln + lm + l + 3. This modification gives the strong unforgeability of
CL+ signatures, and signatures generated with this adaption are also valid in the original
scheme as lr + 2 > lm + 2. Secondly, the secret key has an additional element s, which
is relevant when considering the adaptor construction but does not change the signing
or the verification process. The generator u is part of the public parameters. Thirdly,
the verification algorithm checks that r < 2ℓr to ensure that the random element is in
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the right domain. Finally, we define CL+ over the group of the signed quadratic residues
modulo n. This allows efficient membership checking of the group elements while not
influencing the strong RSA assumption (c.f. Theorem 7).

Applying Theorem 4 to CL+. In this section, we show that the CL+ signature scheme
is dichotomic, and its strong unforgeability can be proven using a simulatable transpar-
ent reduction. In addition, we show the existence of an efficient statement verification
algorithm.

Lemma 13. The CL+ signature scheme (Definition 29) is a dichotomic signature scheme
w.r.t the homomorphic function OWF : y ∈ Z∗

n → by ∈ QR+
n in accordance with Defini-

tion 17.

Proof. The provided function OWF is homomorphic and quasi-injective. It is quasi-
injective since if one finds two elements x ̸= y, such that bx = by, then x − y divides
the group order of QR+

n , which allows factoring n. To show that the CL+ signature
is dichotomic, we must show decomposability, verifiability, and homomorphism. For
decomposability, we define Σ1 as Σ1(sk,m,OWF(r)) := (v, e), where ve ≡ am · OWF(r) ·
c mod n and Σ2(sk,m, σ1; r) := r. Verifiability holds as the verification equation ve ≡
ambrc mod n can be checked using the inputs vk,m, v, e,OWF(r) = br. With the same
argument as in the proof of Lemma 5, homomorphism holds.

Lemma 14. There exists an efficient algorithm StmtVrfy that, on input (vk, Y, aux), can
decide if a statement Y is an element of the image of OWF.

Proof. The function OWF maps surjective in the group QR+
n , since it is quasi-injective,

and |QR+
n | = ψ(n)/4 < ψ(n). Hence, each group element is a valid statement. Since the

group QR+
n has efficient membership testing, the algorithm StmtVrfy can return whatever

the membership testing algorithm output. If the algorithm StmtVrfy outputs 1, Y is an
element of the image of OWF and hence is a valid statement.

Lemma 15. The CL+ signature scheme is strongly unforgeable against an adaptively
chosen message attack under the strong RSA assumption. This strong unforgeability can
be proven using a transparent reduction.

Proof of Lemma 15. The proof for the strong unforgeability of CL+ is given in Ap-
pendix B. It remains to show that this proof uses a transparent reduction, which we
do now. The strong RSA assumption on a flexible RSA instance is a non-interactive hard
problem. We have to show that the reduction provided in the proof in Appendix B is, in
fact, transparent. Simulated Key Generation is defined in the key generation algorithms
for the odd and even case. The simpk equals the generated public key. And the simsk
gets the values e1, . . . e2K , as well as r1, r2, α, β, t, and u and s. The Simulated Signature
Generation is also defined in the proof in Appendix B and all the used values to simulate
the signatures are stored in simsk. The Breaking Algorithm checks if the forgery type was
guessed right and calls the breaking algorithm of the right kind.

Lemma 16. Let (n, u) be an instance of the flexible RSA problem in the group QR+
n and

s ←$ Z \ {0} a value. If DLog is hard in QR+
n with the generator u, then the function
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OWFu,s,n : Z∗
n → QR+

n that maps x ∈ Z∗
n to usx is a quasi-injective homomorphic one-

way function and thus builds a canonical hard relation Rel. This hard relation is a hard
relation with privately decidable auxiliary information if AuxGen(y) = uy for any witness
y ∈ Z∗

n. The transparent reduction of the SUF-CMA security of the CL+ signature scheme
is simulatable w.r.t Rel in accordance with Definition 23.

Proof of Lemma 16. If DLog is hard in QR∗
n, and u is a generator of QR∗

n, then the value
aux := uy leads indeed to a hard relation with auxiliary information. As the signing key
contains the value s, such that us = b to the element b ∈ vk, the pre-signer can verify
this auxiliary information privately. The simulation Sim works the following way: Upon
inputting a message mi and a statement Y , it first checks if the auxiliary information is
well-formed using s. Afterward, it selects the prime element ei from simsk and samples
a random r ∈ DR. Using the auxiliary information aux = uy from the statement it then
computes aux′ := auxE/e if the reduction is in the even state and else aux′ := auxE/e·r1 . It
then calculates v as in the signing algorithm of the transparent reduction and updates it
to get v′ := v · aux′ = v · by/e. This works by definition of the simulated key generation
algorithm and returns (e, v′, r). This leads to a valid pre-signature for the public key
simpk on the message, statement pair (m,Y ), as v′e ≡ ambrY c mod n. Sim achieves the
same distribution as the original pre-signing algorithm. Thus, no distinguisher can have
a non-negligible advantage in distinguishing between a “normal” pre-signature and the
output of Sim.

8.5 Adaptor Signatures from ID-Based Sigantures

A recent work by Erwig et al. [Erw+21] showed that so-called commitment-recoverable
identification schemes with a homomorphic transformation can be transformed into adap-
tor signatures. We slightly deviate from their formalization to match our generalized in-
terface without sacrificing the compatibility to all known schemes, e.g., Schnorr [Sch91],
the Katz-Wang [KW03], and Guillou-Quisquater [GQ90]. The following definitions are
taken almost verbatim from [Erw+21].

Definition 30 (Canonical Identification Scheme). A canonical identification scheme ID
is defined as a tuple of four algorithms ID := (IGen,P,ChSet,C) defined as follows.
(sk, vk)← IGen(λ). The key generation algorithm IGen takes as input the security param-
eter λ and outputs a secret and a public key (sk, vk). We assume that vk defines the set
of challenges, namely ChSet.
P. The prover algorithm P consists of two algorithms namely P1 and P2.

1. P1 takes as input the secret key sk and returns a commitment R ∈ Drand and a state
St.

2. P2 takes as input the secret key sk, a commitment R ∈ Drand, a challenge h ∈ ChSet,
and a state St and returns a response s ∈ Dresp.

b← V. The verifier algorithm V is a deterministic algorithm that takes the public key vk
and the conversation transcript as input and outputs 1 (acceptance) or 0 (rejection).
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Definition 31. An identification scheme ID is called commitment-recoverable, if V first
internally calls a function V0 which recomputes R0 = V0(vk, h, s) and then outputs 1, iff.
R0 = R.

Definition 32. A signature scheme obtained from a canonical, commitment-recoverable
identification scheme via the Fiat-Shamir heuristic has the following form.

KGen(λ)

1 : (sk, vk)← IGen(λ)

2 : return (sk, vk)

Vrfy(vk,m, (h, s))

1 : R := V0(vk, h, s)

2 : return h = H(R,m)

Sign(sk,m)

1 : (R,St)← P1(sk)

2 : h := H(R,m)

3 : s← P2(sk, R, h, St)

4 : return (h, s)

Our formalization of dichotomic signatures captures all three signature schemes in
[Erw+21], namely the signature schemes of Schnorr, Katz-Wang, and Guillou-Quisquater.

Lemma 17. Signature schemes based on canonical, commitment-recoverable identifica-
tion schemes as for Definition 32 are dichotomic signature schemes w.r.t. a one-way
function OWF in accordance with Definition 17, if P2 is homomorphic in the St compo-
nent, the equation R = OWF(St) holds for all St, and there exists an algorithm V1, such
that V0(vk, h, s) = V1(vk, h,OWF(s)).

Proof. To show that these identification-scheme-based signature schemes are dichotomic,
we have to provide definitions for the functions Σ1, Σ2, and Vrfy′. Note that we have, by
assumption, that OWF(St) = R. Our notation for adaptor signature schemes carries over
to St being r and R being OWF(r). We identify the function Σ1 to be H and Σ2 to be P2.
These functions match the interfaces of Σ1 and Σ2. By the assumption of this theorem,
Σ2 is homomorphic in the randomness. As the identification-scheme is commitment-
recoverable, we can define Vrfy′ to be the check h = H(V1(vk, h,OWF(s)),m). By the
assumption on V1, this fulfills the definition of Vrfy′.

In contrast to all previous schemes, the class of commitment-recoverable identification-
based signature schemes has no fixed one-way function. While the Schnorr signature has
a DLog one-way function and hence also has efficient image checking for the one-way
function (c.f. Lemma 14), this does not generally hold for the Katz-Wang and Guillou-
Quisquater signature schemes. Moreover, the hard relation between the group members
of the Katz-Wang signature scheme cannot be checked without violating DDH. Therefore,
if the Katz-Wang signature scheme should satisfy pre-verify soundness, a non-interactive
zero-knowledge proof of membership needs to be inserted into the auxiliary information of
each statement. Since the Identification-scheme-based adaptor signatures already make
use of the random oracle, such a proof can be given using a Sigma protocol using the
Fiat-Shamir heuristic.
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Theorem 5. Identification-scheme-based signature schemes as for Lemma 17 provide a
simulatable transparent reduction T from the SUF-CMA security to an underlying inter-
active hard problem w.r.t the function OWF.

Proof of Theorem 5. As the identification-scheme-based signature schemes are in the ran-
dom oracle model, simulatability can be achieved without using a simulated secret key
having access to a signing oracle. The reduction from SUF-CMA security to an underlying
interactive hard problem is shown in [KMP16]. We do not need to specify the simulated
signing and key-generation algorithm from the reduction since we do not need to use
SimKg. Therefore, we implicitly use the algorithms from the StrongSigForge game. This
means, as SimKg, we just forward the provided public key from the StrongSigForge game.
The breaking algorithm requires just a valid message, forgery pair (m∗, σ∗ that breaks
the SUF-CMA security of Σ. The simulated signing algorithm SimSign calls the signing
oracle provided by the StrongSigForge game and forwards the output. The simulator Sim
is realized using the simulated signing algorithm and by reprogramming the ROM in the
following way. This idea is taken from [Erw+21] but generalized to the notion of simu-
latability. We denote H to be the state of the random oracle. Note that we assume in
Lemma 17 the existence of a function V0 that on input σ outputs the one-way function
of the randomness OWF(r). The algorithm Sim saves the state of the random oracle in

SimOSign,H(m,Y )

1 : H ′ := H

2 : σ ← OSign(m)

3 : OWF(r)← V0(simpk, σ)

4 : if H ′[simpk||OWF(r)||m] ̸= ⊥ ∨H ′[simpk||OWF(r) · Y ||m] ̸= ⊥
5 : abort

6 : x := simpk||OWF(r) · Y ||m
7 : H[simpk||OWF(r)||m] := H[x]

8 : H[x]←$ ChSet

9 : return σ

Figure 22: The Sim algorithm of the transparent reduction of ID-based signature schemes.

the variable H ′. Then, it obtains a valid signature from the signing oracle on the mes-
sage m. Then it checks if the old random oracle was already queried either on the input
simpk||OWF(r)||m or on the input simpk||OWF(r)·Y ||m. If this is the case, it aborts. Note
that by the size of the randomness space DR, this happens only with negligible probability.
Then it reprograms the random oracle, such that the signature σ becomes a pre-signature
by swapping the inputs of H[simpk||OWF(r)||m] and H[simpk||OWF(r) · Y ||m]. Finally,
Sim returns the value σ. As the ROM was never queried on these values, no distinguisher
can tell the distribution of “normal” pre-signing and the output of Sim apart.
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Supplementary Materials

A Definitions

A.1 Digital Signatures

In a digital signature scheme [DH76; GMR88], a signer runs the signing algorithm Sign
to generate a signature σ on a message m using his private key sk. The signature’s
validity can be publicly verified with the algorithm Vrfy, which requires the signer’s
public verification key vk, a message m, and a signature σ.

Definition of Signatures. We recall the definition of digital signatures.

Definition 33 (Digital signature). Let DK be the secret key space, DK′ be the public key
space, DR be the randomness space, DΣ be the signature space and DM be the message
space. A digital signature scheme Σ = (KGen, Sign,Vrfy) for messages of length ℓm is a
triple of efficient algorithms defined as:
(sk, vk)← KGen(λ). The key generation algorithm KGen(1λ) is a PPT algorithm that on

input a security parameter 1λ, outputs a key pair (sk, vk) ∈ DK ×DK′.
σ ← Sign(sk,m). The input of the PPT signing algorithm Sign(sk,m) is a private key

sk ∈ DK and message m ∈ {0, 1}ℓm = DM, it outputs a signature σ ∈ DΣ.
b← Vrfy(vk,m, σ). The verification algorithm Vrfy(vk,m, σ) is a DPT algorithm that takes

as input a a public key vk ∈ DK′, a message m ∈ {0, 1}ℓm = DM and a signature σ ∈ DΣ

and outputs a bit b.

We define the correctness of signatures in the usual way:

Definition 34 (Correctness). A digital signature scheme Σ is correct if for any m ∈
{0, 1}ℓm it holds, that for all λ ∈ N and all (sk, vk)← KGen(1λ):

Pr[Vrfy(vk,m, Sign(sk,m)) = 1] = 1,

where the randomness is taken over the random choice of KGen and Sign.

Security of Signatures. In the following, we recall the notions of unforgeability and
strong unforgeability. In both games, the adversary A is given as input the public vk
and has access to a signing oracle OSign(·) that A may query adaptively on messages of
his choice. The difference between unforgeability and strong unforgeability lies in the
success determination of A. In case of unforgeability, the adversary wins the game if it
computes a valid signature σ∗ on a new message m∗, i.e., one that was not submitted to
the signing oracle. The notion of strong unforgeability demands that A must compute
a fresh message-signature pair (m∗, σ∗) to win the game. The difference is that A can
win the game even if it computes a new signature for a message it queried to the signing
oracle. Both security notions are defined in the following. We mark the slight differences
between both security definitions with a gray background.
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Definition 35 (EUF-CMA (SUF-CMA) security). A signature scheme Σ is (strongly) exis-
tential unforgeable under a chosen message attack or EUF-CMA resp. (SUF-CMA) secure,
if for every PPT adversary A there exists a negligible function ν such that for all λinN,
Pr
[
SigForgeA,Σ(λ) = 1

]
≤ ν(λ), where the experiment SigForgeA,Σ is defined in Figure 23

and the probability is taken over all random choices of all randomized algorithms.

SigForgeA,Σ(λ)

1 : Q := ∅
2 : (sk, vk)← KGen(1λ)

3 : (m∗, σ∗)← AOSign(vk)

4 : return (m∗ /∈ Q ∧ Vrfy(vk,m∗, σ∗))

5 : return ((m∗, σ∗) /∈ Q ∧ Vrfy(vk,m∗, σ∗))

OSign(sk,m)

1 : σ ← Sign(sk,m)

2 : Q = Q∪ {m}
3 : Q = Q∪ {(m,σ)}
4 : return σ

Figure 23: Security notions of digital signatures, where the gray part refers to strong
unforgeability and the regular part to unforgeability. The gray winning condition replaces
the line before.

B The Camenisch-Lysyanskaya Signature Scheme

The Camenisch-Lysyanskaya signature scheme is a signature scheme [CL03] based on
the strong RSA assumption on a flexible RSA instance and proven secure without using
the random oracle model. Therefore, it is not an identification-based signature scheme.
The CL signature scheme as given in [CL03] only achieves EUF-CMA security. So to the
original CL signature scheme, Theorem 4 can not be applied. This is given through the
fact that one can rerandomize a given valid signature to get another in the following
way: Given a valid signature, message pair (σ,m) = (v, e, r,m). One can choose a
random element r′ ← Zℓr and compute r∗ = r′ · e. Then the signature, message pair
(σ∗,m) = (v · br′ , e, r + r∗,m) is valid as

(
v · br′

)e
= vebr

′e ≡ ambrbr
∗
c ≡ ambr+r∗c mod n.

To avoid this, we can restrict the prime number e to be bigger than the random number
r. Choosing ℓe ≥ lr + 2, in fact, leads to proof for the SUF-CMA security of the CL
signature scheme, as we will show in Lemma 15.

Furthermore, we extend the key of the CL+ signature scheme to obtain a signature
scheme with a simulatable transparent reduction. For this purpose, we use the one-way
function OWF : DR → DR′ that maps x to bx to build a hard relation. The simulation of
pre-sign queries needs to compute the e-th root of the statement Y = by for a random
prime e, even if this is hard in our RSA group without knowing the factors of n. We
circumvent this problem by providing the auxiliary information aux = uy to the statement
Y , such that there exists an element s, for which us = b. So now if e divides s and we
know an element x, such that x·e = s, we can compute auxx = uyx = us/e·y = b1/e·y = Y 1/e

without knowing the witness y. To check if the auxiliary information is well computed,
we can check if Y = auxs. To allow any party to compute this auxiliary information, we
append the value u from the secret key to the public parameters of the hard relation.
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Furthermore, the secret key holder of the CL+ signature scheme can efficiently check if
auxiliary information is well-formed since it knows s, such that b = us.
We now prove the following: The modified Camenisch-Lysyanskaya signature scheme
CL+ (Definition 29) achieves SUF-CMA security (Definition 35) under the Strong RSA
assumption (Definition 39).

Proof of Lemma 15 . This proof is taken from [CL03] almost verbatim. It remained to
add some argumentation to the proof of Lemma 5 from the original paper to handle
forgeries of Type 2 that are signatures on the same message. Additionally, we added
Type 4 forgeries. Furthermore, we combined the three proofs into one reduction.

To prove this theorem, we want to reduce the SUF-CMA security of the signature
scheme to the hardness of the strong RSA assumption on a flexible RSA instance. There-
fore, we assume that an adversary A exists that breaks the SUF-CMA security of the
scheme with non-negligible probability ϵ(λ). We then create a reduction R that, on in-
put an instance of the flexible RSA problem (n, u), simulates the StrongSigForge game to
this adversary and uses the adversaries ability to break the SUF-CMA security to break
the strong RSA assumption on the flexible RSA instance (n, u). The reduction computes
a public key vk that is indistinguishable from a soundly computed public key and pro-
vides a signing oracle to the adversary A. When the adversary outputs its forgery, the
reduction R uses this forgery to break the strong RSA assumption.

We now assume that we know the number K of the adversary’s oracle queries. We can
do so because otherwise, we could estimate this number experimentally. Furthermore,
with the Markov inequality, half the time, A uses less than 2K oracle queries. The forgery
σ∗ given from the adversary has the following form (e, v, r). Since the forgery is a new
pair (m∗, σ∗), there are four possible types of forgeries:

Type 1 The prime number e from the forgery was never returned by the signing oracle.

Type 2 The prime number e was previously returned from the signing oracle at query i,
but the root v is different from the returned root vi.

Type 3 The prime number e was previously returned from the signing oracle at query i,
and the root v equals the root vi, but the tuple (m, s) is new.

Type 4 The prime number e was never returned by the signing oracle, but e divides s.

On input of the flexible RSA instance (n, u), the reduction R guesses if the provided
forgery will be of even or odd type and chooses the matching algorithms. It provides the
signing oracle to the adversary using these algorithms.

Key Generation(odd) Choose 2K random primes e1, . . . e2K of size ℓe. Choose, at
random values r1, r2 ∈ Zn2 . Let a = uE, where E =

∏2K
i=1 ei, b = ar1 , c = ar2 ,

s = E · r1. Let (n, a, b, c) be the public key.

Key Generation(even) Choose 2K random primes e1, . . . e2K of size ℓe. Choose, at
random values α, β ∈ Zn2 . Choose a random value t of length ℓr. Let b = uE,
where E =

∏2K
j=1 ej/ei, a = bα mod n, c = beiβ−t, s = E. Let (n, a, b, c) be the

public key.
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Signing(odd) Receiving the ith signing querymi, choose a value ri of length ℓr uniformly
at random. Compute vi = ami

i brii ci with ai = uE/ei , bi = ar1i , ci = ar2i and return
(ei, vi, ri).

Signing(even) Receiving the jth signing query mj with j ̸= i, choose a value rj of length

ℓr uniformly at random. Compute vj = a
mj

j b
rj
j cj with bj = uE/ej , aj = bαj , cj = beiβ−t

j

and return (ej, vj, rj). Receiving the ith signature query mi, compute the value
ri = t− αmi and vi = bβ. Return (ei, vi, ri). It holds, that v

ei
i = beiβ+t−t = amibric.

Note that the reduction’s public key and all the signatures provided have the same dis-
tribution as in the original scheme. When the adversary provides its message, forgery
pair (m∗, σ∗) that is valid, the reduction aborts if the guess of even or odd was incorrect.
This happens with probability at most 1/4 by a standard hybrid argument. The follow-
ing break algorithms show how the strong RSA assumption on the flexible RSA problem
can be broken given a forgery of the particular type when the guess of odd or even was
correct. This is done if the break algorithms output values (v, e) such that e > 1 and
ve ≡ u mod n. The algorithms get as input from the key generation algorithm all the
primes e1, . . . , e2K and the values α, β, r1, r2 and from the reduction of the forgery, mes-
sage pair (m, e, v, r) as well as the queue Q = {(mi, σi)} and the instance of the flexible
RSA instance (n, u).
Break(Type 1): The forgery (e, v, r) on message m with e > 4 gives us ve = ambrc =
uE(m+r1r+r2). Note that for a Type 1 forgery, gcd(E, e) = 1. If E(m + r1r + r2) and e
are relatively prime, we can use Lemma 19 (Shamir’s Trick) to break the strong RSA
assumption. We will use the following claim to use Shamir’s Trick: With probability
at least 1/2 over the random choices made by the reduction, it is the case that either
gcd(e,m + r1r + r2) < e, or, on input e, one can efficiently factor n. This Claim is
proven in [CL03]. Therefore, Break(Type 1) breaks the strong RSA assumption when-
ever the number of queries does not exceed 2K, which happens with probability 1/2 by
the Markov inequality, and whenever the conditions of the claim are satisfied, which oc-
curs with probability at least 1/2. So Break(Type 1) succeeds with probability at least
1
4
.

Break(Type 3): For the forgery signature (m, e, v, r) and the ith signature (mi, ei, vi, ri)
it holds, that v = vi and e = ei, but the pair (m, r) is new. With those equalities, it holds,
that ambr ≡ amibri . This implies that m+ r1r ≡ mi+ r1ri mod ϕ(n). As (m, r) ̸= (mi, ri)
and r1 > m, r1 > mi, m+ r1r ̸= mi + r1ri. Therefore, ϕ(n)|m+ r1r−mi − r1ri ̸= 0, and
so by Corollary 1, this forgery allows the reduction to break the strong RSA assumption.
The probability that Break(Type 3) succeeds is 1/2 due to the Markov inequality.
Break(Type 2): For the forgery signature (m, e, v, r) and the ith signature (mi, ei, vi, ri)
it holds, that v ̸= vi and e = ei. As both signatures verify, we have

vei = ambrc = bmα+r+eiβ−t = b(m−mi)α+(s−si)+eiβ.

If m ̸= mi, this forgery is shown to break strong RSA in [CL03] with probabilty 1/4· 1
2K

=
1
8K

.
If m = mi, it holds that r ̸= ri, because else ve ≡ vei with ve ̸= vei . It is true that ve ̸= vei
as vi ̸= v(Type 2), and the function that maps x to xe in the group QR+

n is injective if e is
relatively prime to the elements p′, q′ that generate n. And e is relatively prime because
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otherwise, one could factorize n with the element e. Besides of this inequality, we have
ei|(m−mi)α + (r − ri) + eiβ = (r − ri) + eiβ since both signatures, the provided one
and the forgery, verify. This equation holds if and only if ei|r− ri. This can not be since
r ̸= ri and le > lr + 2. Therefore, we have that ei ∤ (mα + s + eiβ − t) = γ and thus we
have vei ≡ uEγ, where gcd(e, γ) = 1. This is the same setup as if m were not equal to mi.
So this breaks the strong RSA assumption as shown in [CL03]. Thus with probability
1/2 (Markov) · 1

2K
(right guess) = 1

4K
Break(Type 2) succeeds if m ̸= mi.

Break(Type 4): If the forgery is of type four, then the reduction aborts. Note that this
is only the case if the adversary found a prime that was never returned by the signing
oracle but was selected to compute s. The probability of finding such an e is negligible
due to the size of ℓe and the fact that factoring is hard in the RSA group.

The reduction does not abort with a probability of > 1/4 if it found the right forgery
number, and if the forgery is of type four, it only aborts with negligible probability. If it
does not abort, it can determine the type of the forgery; the forgery was not of type four
and wins with non-negligible probability in each kind if the forgery verifies. Thus, the
reduction breaks strong RSA with overwhelming probability if the adversary succeeds.
And therefore, such an adversary cannot exist.

Definition 36 (Camenisch Lysyanskaya Signature Scheme). Let λ ∈ N be the security
parameter, ℓm, ℓn, ℓr ∈ N. The Camenisch Lysyanskaya signature scheme for the message
space DM = {0, 1}ℓm consists of the following algorithms:

Key Generation (sk, vk)← KGen(1λ). The key generation algorithm chooses a special
RSA modulus n = pq, p = 2p′+1, q = 2q′+1 of the length ℓn = 2λ. Furthermore, it
chooses a, b, c ∈ QRn uniformly at random and outputs vk = (n, a, b, c) and sk = p.

Signing σ ← Sign(sk,m). The signing algorithm chooses a random prime number e of
length ℓe ≥ ℓm + 2, and a random number r of length ℓr = ℓn + ℓm + l where l is a
security parameter. Finally, it computes a v such that ve ≡ ambrc mod n. It returns
the triple (e, v, r).

Verification b← Vrfy(vk,m, σ). The verification algorithm verifies that the triple (e, v, r)
is a signature m ∈ DM by checking that ve ≡ ambrc mod n and checking that
2ℓe > e > 2ℓe−1.

Theorem 6. The Camenisch Lysyanskaya signature scheme for Definition 36 is di-
chotomic.

Proof of Theorem 6. To show that CL signatures are dichotomic, we want to stress that
for a given b that is part of the public key vk, the function OWF : DR → DR′ that maps
x to bx is a homomorphic function.
We firstly provide the following definitions for Σ1 and Σ2:
We define Σ1 as Σ1(sk,m; r) := r. It is clear, that Σ1(sk,m; r)+y = r+y = Σ1(sk,m; r+
y). Furthermore we define Σ2 as Σ2(sk,m; r) = (v, e) that are defined as in Definition 29.
Thus e is a random prime number and it holds, that ve ≡ ambrc mod n.
To show the verification property:
The verification of a signature (v, e, r) w.r.t. a message m is done via checking the equa-
tion ve ≡ ambrc mod n. This equation can be checked upon the inputs ((n, a, b, c), (v, e), br) =
(vk, σ1,OWF(σ2)).
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B.1 Number-Theoretic Basics of CL Signatures

The following definitions, lemmas, and corollaries are taken almost verbatim from the
work of Camenisch and Lysyanskaya [CL03].

Definition 37 (Safe primes). A prime number p is called safe if p = 2p′ + 1, such that
p′ is also a prime number.

Definition 38 (Special RSA modulus). An RSA modulus n = pq is special if p = 2p′+1
and q = 2q′ + 1 are safe primes.

Definition 39 (Strong RSA Assumption). The strong RSA assumption is that it is hard,
on input a RSA modulus n and an element u ∈ Z∗

n, to compute values e > 1 and v such
that ve ≡ u mod n. More formally, we assume that for all polynomial-time circuit families
{Ak}, there exists a negligible function ν(λ) such that

Pr[n← RSAmodulus(1λ);u← Z∗
n(v, e)← Ak(n, u) : e > 1 ∧ ve ≡ u mod n] ≤ ν(λ).

The tuple (n, u) generated as above is called a general instance of the flexible RSA
problem. By QRn ⊆ Z∗

n we will denote the set of quadratic residues modulo n, i.e.,
elements a ∈ Z∗

n such that ∃b ∈ Z∗
n such that b2 ≡ a mod n.

Lemma 18. If n = pq, p = 2p′ + 1, q = 2q′ + 1 is a special RSA modulus, then QRn is
a cyclic group under multiplication of size p′q′, where all but p′ + q′ of the elements are
generators.

Due to the above lemma, we can assume that a randomly chosen element of QRn is
a generator if (n, u) is an instance of the flexible RSA problem, and n is a special RSA
modulus.

Lemma 19 (Shamirs Trick). Let an integer n be given. Suppose that we are given the
values u, v,∈ Z∗

n and x, y ∈ Z, gcd(x, y) = 1 such that vx ≡ uy mod n. Then there is an
efficient procedure to compute the value z such that zx ≡ u mod n.

Corollary 1. Let n be an integer and u←$ Z∗
n. Let e such that gcd(e, ϕ(n)) = 1 be given.

Given any value x such that ϕ(n)|x, one can efficiently compute v such that ve ≡ u mod
n.

B.1.1 Signed Quadratic Residues

In the following, we recite results from Hofheinz and Kiltz [HK09]. In particular, we show
how to apply the results from Appendix B.1 to the setting of signed quadratic residues.

Definition 40. Let n ∈ N. We define the signed quadratic residues (QR+
n ) as

QR+
n := {|x| : x ∈ QRn},

where |x| is the absolute value when representing elements of Zn as the set {−(n −
1)/2, . . . , (n− 1)/2}.

We start by reciting the lemma, which shows that the signed quadratic residues are
a cyclic, efficiently recognizable group of order ϕ(n).
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Lemma 20. Let n be a Blum integer (i.e. n ≡ 3 mod 4). Then:

1. (QR+
n ) is a group of order ϕ(n)/4.

2. QR+
n is efficiently recognizable (given only n).

3. If QRn is cyclic, so is QR+
n .

We first observe that the strong RSA assumption is defined w.r.t. elements u ∈ Z∗
n.

Since QR+
n is a subgroup of Z∗

n, the strong RSA assumption is applicable. The same
holds for Shamirs Trick and Corollary 1. Secondly, if n is a special RSA modulus, then
QRn is a cyclic group. By Lemma 20, we know that the same holds for QR∗

n. In addition,
each generator g of QRn is also a generator of QR+

n when transformed to |g|. Henceforth,
Lemma 18 is also applicable to QR+

n . It remains to show that the strong RSA assumption
w.r.t. the signed quadratic residues are at least as hard as the strong RSA assumption
w.r.t. the quadratic residues (c.f. Definition 39). We do this by reciting a theorem of
[JB09].

Theorem 7 (Theorem 1 of [JB09]). If the strong QR-RSA problem is asymptotically hard
where the underlying modulus n is chosen randomly from the set of all safe prime products
of bit size bounded by λ, then the strong signed QR-RSA problem is also asymptotically
hard for the same n.

Since this theorem holds, from now on, we drop the corresponding subgroup Z∗
n, QRn,

or QR+
n when referring to the strong RSA assumption.

C Additional Lemmas

Lemma 21. Construction 1 satisfies pre-signature correctness and pre-signature adapt-
ability.

Proof of Pre-Signature Correctness. Let m ∈ {0, 1}∗ be an arbitrary message and λ ∈ N.
Let (sk, vk) ← KGen(1λ), (Y, y) ← RGen(1λ), σ̃ ← pSignsk(m,Y ), σ := Adapt(vk, (σ̃, y))
and y′ := Extract(vk, σ̃, σ, Y ). Let σ̃ := (σ1, σ2). We first show that pVrfy(vk,m, Y, σ̃) = 1:
By the construction, it holds, that pVrfy(vk,m, Y, σ̃) = Vrfy′(vk,m, σ1,OWF(σ2)·Y ). With
the homomorphism of the function OWF and by the definition of the relation, we have
that

Vrfy′(vk,m, σ1,OWF(σ2) · Y ) = Vrfy′(vk,m, σ1,OWF(σ2 + y)),

since Y = OWF(y). With the definition of a dichotomic signature, σ1 = Σ1(sk,m;OWF(r)·
Y ) and σ2 + y = Σ2(sk,m, σ1; r + y). Therefore,

Vrfy′(vk,m, σ1,OWF(σ2+y)) = Vrfy′(vk,m,Σ1(sk,m;OWF(r)·Y ),OWF(Σ2(sk,m, σ1; r)+y).

With the homomorphic property of OWF, this equals to

Vrfy′(vk,m,Σ1(sk,m;OWF(r + y)),OWF(Σ2(sk,m, σ1;OWF(r + y))).

By the definition of dichotomic signatures, this equals to

Vrfy(vk,m, (Σ1(sk,m;OWF(r + y)),Σ2(sk,m, σ1,OWF(r + y))
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and with the correctness of the underlying signature scheme this equals to 1 since this is
a valid signature for the message m and the randomness r + y.
Now we show that Vrfy(vk,m, σ) = 1: By the definition of Adapt it holds, that

Vrfy(vk,m, σ) = Vrfy(vk,m, (σ1, σ2 + y)).

The same computation as for pVrfy shows, that

Vrfy(vk,m, (σ1, σ2 + y)) = Vrfy′(vk,m, σ1,OWF(σ2 + y)) =

Vrfy(vk,m,Σ1(sk,m;OWF(r + y)),Σ2(sk,m,Σ1; r + y) = 1.

Finally, we need to show that (Y, y′) ∈ Rel: By construction, y′ = (σ2+ y)−σ2 = y. And
(Y, y) ∈ Rel by definition.

Proof of Pre-Signature Adaptability. Let m ∈ {0, 1}∗ be a arbitrary message, λ ∈ N,
(Y, y) ∈ Rel a hard relation, vk be a public key, σ̃ ← {0, 1}∗ be a pre signature such that

pVrfy(vk, (m,Y, σ̃)) = 1.

This means that for a pre-signature σ̃ = (σ1, σ2), it holds that Vrfy
′(vk,m, σ1,OWF(σ2) ·

Y ) = 1. By the homomorphic property of OWF, this equals to Vrfy′(vk,m, σ1,OWF(σ2 +
y)) = 1. And with the dichotomic definition this equals to Vrfy(vk,m, σ1, σ2 + y) and
this equals to Vrfy(vk,m,Adapt(vk, σ̃, y)) since Adapt(vk, σ̃, y) = Adapt(vk, (σ1, σ2), y) =
(σ1, σ2 + y). So any pre-signature that verifies can be adapted to be a full signature that
verifies.

To finish the proof of Theorem 4, it remains to show full extractability. The proof of
full extractability depends on an auxiliary lemma, which we now state.

Lemma 22. Let OWF : DR → DR′ be an injective homomorphic one-way function, and
Rel be a canonical hard relation with auxiliary input for OWF. Let Σ be a dichotomic
signature scheme with respect to OWF that has a simulatable transparent reduction T
from the SUF-CMA security of Σ to an underlying hard problem Π. Then for any Y ∈ DR′

and any message m ∈ DM and any PPT distinguisher D for the values SSim := {σ̃ : σ̃ ←
T .Sim(simsk,m, Y )} and SpSign := {σ̃ : (σ1, σ2)← T .SimSign(simsk,m), σ̃ := (σ1, σ2−y)},
the equation

|Pr[D(SSim, λ) = 1]− Pr[D(SpSign, λ) = 1]| ≤ ν(λ)

holds, where the probabilities are derived from the random choices of m,Y, λ and the
random choices of the probabilistic algorithms.

Proof. Note that an adaptor signature scheme of Construction 1 has the following prop-
erty: A pre-signature σ̃ for the message - randomness pair (m, r) and the statement -
witness pair (Y, y) by definition is equal to (σ1, σ2−y) where (σ1, σ2) is the dichotomic sig-
nature for the message, randomness pair (m, r+ y). By the injectivity of OWF, both sets
are equally distributed; therefore, no distinguisher between these two sets can exist.
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D Proofs of the Counter Examples

This section shows that our counter-examples in Section 4 are secure adaptor signatures
w.r.t. Definition 11.

Lemma 23. Let AS be an adaptor signature scheme that is secure w.r.t. Definition 11
and achieves extractability. Then, the modified adaptor signature scheme AS′ as for Fig. 5
is secure w.r.t. Definition 11.

Proof. To prove Lemma 23, we show pre-signature correctness, pre-signature adaptability,
and extractability. Since extractability implies unforgeability and witness extractability,
AS′ is secure w.r.t. Definition 11.
Pre-Signature Correctness. The pre-signature correctness of AS′ follows directly from the
pre-signature correctness of AS, since the algorithms pSign′ and pVrfy′ run the algorithms
pSign and pVrfy twice. Moreover, Adapt′ and Extract′ run Adapt and Extract on the first
pre-signature part, which is a AS pre-signature.
Pre-Signature Adaptability. Since the algorithm pVrfy′ checks, if the first part of a pre-
signature, namely σ̃1 pre-verifies under pVrfy, and the algorithms Adapt′, and Extract′

consider only σ̃1, pre-signature adaptability follows by the pre-signature adaptability of
AS.
Extractability. We now reduce the extractability of AS′ to the extractability of AS.
Therefore, we assume by contradiction that an adversary A can break the extractability
of AS′ with non-negligible probability ε. We use A to build an algorithm B that breaks
the extractability of AS as follows: B gets as input a public key vk and has access to
a pSign, and a Sign, and a NewY oracle. B forwards vk to A and forwards the Sign,
and NewY oracle requests of A to its own oracles. To answer pSign′ oracle queries of
A on a message m and a statement Y , B queries its pre-sign oracle twice on m and
Y and concatenates the two pre-signatures. Eventually, A outputs a message-signature
pair (m∗, σ∗) which B also outputs. If A wins extractability, then B also does, since σ∗

extracts with a pre-signature (σ̃1, σ̃2) in AS′ if and only if σ∗ extracts with either σ̃1 or
σ̃2.

Lemma 24. Let Rel be a relation with efficiently decidable statements. This means there
exists an efficient algorithm that can check if Y ∈ LRel. Let AS be an adaptor signature
scheme for Rel that is secure w.r.t. Definition 11 and achieves extractability. Then, the
modified adaptor signature scheme AS′ as for Fig. 6 is secure w.r.t. Definition 11.

Proof. To prove Lemma 24, we show pre-signature correctness, pre-signature adaptability,
and extractability. Since extractability implies unforgeability and witness extractability,
AS′ is secure w.r.t. Definition 11.
Pre-Signature Correctness. The pre-signature correctness of AS′ follows directly from the

pre-signature correctness of AS, since for all statements (Y, y)← RGen(1λ), all (vk, sk)←
KGen(1λ), all m ∈ {0, 1}ℓm , and all σ̃, σ ∈ {0, 1}∗: pSign′(sk,m, Y ) = pSign(sk,m, Y ),
pVrfy′(vk,m, Y, σ̃) = pVrfy(vk,m, Y, σ̃), Adapt′(vk, σ̃, y) = Adapt(vk, σ̃, y), and Extract′

(vk, σ̃, σ, Y ) = Extract(vk, σ̃, σ, Y ).
Pre-Signature Adaptability. The pre-signature adaptability of AS′ follows by the pre-
signature adaptability of AS, since pre-signature adaptability is only defined for (Y, y)←

72



RGen(1λ). So, pre-signature adaptability holds due to the same proof as for pre-signature
correctness.
Extractability. We now reduce the extractability of AS′ to the extractability of AS.
Therefore, we assume by contradiction that an adversary A can break the extractability
of AS′ with non-negligible probability ε. We use A to build an algorithm B that breaks
the extractability of AS as follows: B gets as input a public key vk and has access to a
pSign, and a Sign, and a NewY oracle. B forwards vk to A and forwards the Sign, and
NewY oracle requests of A to its own oracles. To answer pSign′ oracle queries of A on
a message m and a statement Y , B checks, if Y ∈ LRel. If so, it forwards the response
of its pre-sign oracle on m and Y to A. If not, it answers ⊥ to A. B simulates the
extractability game perfectly for AS′. If A outputs its forgery (m∗, σ∗), B also outputs
this. Since TB ⊆ TA, B wins the extractability game, whenever A does.

Lemma 25. Let AS be an adaptor signature scheme in the random oracle model that
is secure w.r.t. Definition 11. Then, the modified adaptor signature scheme AS′ as for
Fig. 7 is secure in the random oracle model w.r.t. Definition 11.

Proof. To prove Lemma 25, we show pre-signature correctness, pre-signature adaptability,
unforgeability, and witness extractability.
Pre-Signature Correctness. The pre-signature correctness of AS′ follows directly from the
pre-signature correctness of AS, since pSign′ outputs a pre-signature derived from pSign
together with a random element. The algorithms pVrfy, Adapt, and Extract ignore the
additional element.
Pre-Signature Adaptability. The pre-signature adaptability of AS′ follows by the pre-
signature adaptability of AS, since the algorithms pVrfy, Adapt, and Extract ignore the
additional element.
Unforgeability. We now reduce the unforgeability of AS′ to the unforgeability of AS.
Therefore, we assume by contradiction that an adversary A can break the unforgeability
of AS′ with non-negligible probability ε. We useA to build an algorithm B that breaks the
unforgeability of AS as follows: B gets as input a public key vk and has access to a pSign,
and a Sign oracle. B forwards vk to A and forwards the Sign oracle requests of A to its
own oracle. Then, B samples a uniform key sk′. To answer pSign′ oracle queries of A on a
message m and a statement Y , B queries a pre-signature σ̃ on m and Y , and a signature
σ on m from its own oracles. Then, B queries (sk′,m) to the random oracle to obtain r0
and computes r1 = σ ⊕ r0. B flips a bit b ∈ {0, 1} and forwards (σ̃, rb) to A. Eventually,
A outputs a message m∗. B outputs the same message and receives a statement Y and a
pre-signature σ̃ on m∗ and Y . B queries (sk′,m∗) to its own random oracle to obtain r0
and gives (σ̃, r0) to A. This is a perfect simulation of the unforgeability game to A since
A can only see one pre-signature on m∗, and the probability that A guesses sk′, or sk
correctly is negligible. Hence, by the randomness of the RO, this is a perfect simulation,
even if B does not embed a signature to the challenge pre-signature with probability 1/2.
The adversary A eventually outputs a signature forgery σ∗, which B also outputs. If
A never queries the signing oracle on m∗, then B also does not, and thus B wins the
unforgeability game whenever A does.
Witness Extractability. The witness extractability reduction is analogous to the unforge-
ability reduction. Again, the adversary is only allowed to see a single pre-signature on the
challenge message, and the probability of guessing either sk′ or sk correctly is negligible.
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Hence, by the randomness of the RO, B wins the extractability game whenever A does
so.
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Figure 24: Using a Non-interactive Transparent Reduction to Answer Pre-signing Queries
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