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Abstract. Homomorphic secret sharing (HSS) allows n clients to secret-share
data to m servers, who can then homomorphically evaluate public functions
over the shares. A natural application is outsourced computation over private
data. In this work, we present the first plain-model homomorphic secret sharing
scheme that supports the evaluation of polynomials with degree higher than 2. Our
construction relies on any degree-k (multi-key) homomorphic encryption scheme
and can evaluate degree-((k + 1)m− 1) polynomials, for any polynomial number
of inputs n and any sub-logarithmic (in the security parameter) number of servers
m. At the heart of our work is a series of combinatorial arguments on how a
polynomial can be split into several low-degree polynomials over the shares of the
inputs, which we believe is of independent interest.

1 Introduction

Homomorphic secret sharing (HSS), introduced by Boyle, Gilboa, and Ishai [9], allows
n clients to secret share the data x into the shares x1, . . . , xm which are distributed to m
servers, who can then homomorphically evaluate public functions over the shares. The
evaluation is done locally by each server, meaning that there exists a local evaluation
algorithm Eval(f, xj) that takes as input a description of the function f and a share xj ,
and returns a value yj . The result of the distributed computation can be re-constructed
using the decoding algorithm Dec(y1, . . . , ym), which returns the result f(x). HSS
schemes for meaningful classes of functions can be constructed under weak assumptions,
such as decisional Diffie-Hellman (DDH) [9] or the security of Paillier encryption
scheme [20]. A natural application of HSS is outsourced computation over private data.

1.1 Our Contribution

We propose a family of HSS schemes for polynomials, and more generically for
(
∑∏∑

)-arithmetic circuits1 from weak assumptions. More precisely, we show that:

Theorem 1 (Informal). For all integers k ≥ 0 and m = O
(

logλ
log logλ

)
, if there exists

a degree-k homomorphic public-key encryption scheme, then there exists an m-server
homomorphic secret sharing for polynomials of degree d = (k + 1)m− 1.

1 A
(∑∏∑)

-arithmetic circuit [23] is a depth-3 circuit consisting of sum and product gates
of unbounded fan-in, where the gates in the input layer and output layer consist of only sum
gates, and those in the intermediate layer consists of only product gates.



Table 1: Comparison amongst existing HSS schemes for n clients,m servers and resilient
against the corruption of t servers. “n = ∗” denotes unbounded number of clients.

(n,m, t) Functions Assumptions

Shamir [30] (∗,m, t) Rd, d = m− 1 -
Benaloh [6] (∗,m,m− 1) Affine -
Information Theoretic PIR [31,18] (∗,m, 1) Selection -
Beimel et al. [5] (1, 3, 1) Depth 2 Boolean circuits -

Computational PIR [13] (∗,m, 1) Selection Φ-Hiding
Function Secret Sharing [8,25] (1,m,m− 1) Point Function OWF
Spooky Encryption [17] (∗,m,m− 1) Circuits LWE
Boyle et al. [9,10] (∗, 2, 1) Branching Programs DDH
Catalano and Fiore [15] (∗, 2, 1) Rd, d = 2k k-HE

Section 4 and Section 5 (∗,m, 1) Rd, d = (k + 1)m− 1 k-HE

Our scheme is perfectly correct, assuming a perfectly correct homomorphic encryp-
tion scheme, and naturally generalizes to the multi-key and the threshold settings. Our
construction is secure in the plain model, without the need for a public-key setup. In-
terestingly, when k = 0, i.e., the encryption scheme has no homomorphic properties,
we recover the same functionality of Shamir secret sharing [30], i.e., the supported
degree is d = m − 1. A comparison amongst existing HSS schemes is summarized
in Table 1. Most of the known schemes are either limited to very restricted classes of
functions (such as affine or point functions) or require assumptions from which we can
instantiate fully homomorphic encryption (FHE), such as the learning with errors (LWE)
assumption. Notable exceptions include the work of Catalano and Fiore [15] and the
recent breakthrough result of Boyle, Gilboa, and Ishai [9]. The construction of Catalano
and Fiore allows to efficiently outsource the computation of degree-2k polynomials to 2
non-colluding servers, using only a degree-k homomorphic encryption scheme. Boyle et
al. [9] proposed the first 2-server HSS scheme for branching programs (a superclass of
NC1) assuming only the hardness of DDH. A shortcoming of this construction is that the
correct result of the evaluation is recovered only with probability 1

poly(λ) . Additionally,
their multi-key variant assumes the existence of a public-key setup.

Our result directly improves over the work of Catalano and Fiore [15] in two ways.
First, we increase the computable degree d from d = 2k to 2k + 1. While this improve-
ment seems small, it has significant consequences for small values of k: For example,
for k = 1, we obtain a 2-server HSS for degree-3 polynomials, which can be boot-
strapped to securely evaluate any function in P/poly [1] (assuming the existence of a
PRG computable in NC1). In particular, it was shown [1] that any computation in P/poly
can be probabilistically encoded by evaluating a set of polynomials of degree 3. The
encoding can then be decoded in time proportional to the time complexity of the original
computation. Furthermore, the encoding leaks nothing beyond the computation result.

Second, we generalize the scheme of Catalano and Fiore [15] for m ≥ 2 servers,
for any m which is sub-logarithmic in the security parameter. Increasing the number of
supported servers allows us to relax the non-collusion assumption. We derive bounds for
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the maximum degree supported by the resulting scheme and characterize the requirements
for determining the minimum number of servers needed for correct computation.

1.2 Applications

Our HSS can be applied directly to outsource the computation of low-degree polynomials
on private data. Examples of particular interests include:

1. Privacy-preserving machine learning using shallow neural networks where highly
non-linear activation functions are approximated by low-degree (e.g., degree-6 [24])
polynomials to be evaluated on private data.

2. Computation of several statistical measures over private data, such as variance,
skewness and higher moments.

3. A round-optimalm-server PIR which can be casted as the evaluation of the selection
function (a degree d polynomial) over a private index and the entire database DB for
a communication complexity dominated by a factor |DB|

2d + poly(λ).

A recent work from Boyle et al. [11] describes how to generically bootstrap an additive
3-client 2-server HSS scheme for degree-3 polynomials (in the PKI model) into a round-
optimal n-clients m-servers MPC protocol (in the PKI model) for any choice of n and
m which are polynomial in the security parameter. Applying a similar transformation to
our scheme we obtain a round-optimal n-clients m-servers server-aided MPC protocol
in the plain model. Server-aided MPC [27,28,15] models real-life scenarios where
clients outsource the burden of the computation to (non-colluding) cloud servers. In
particular, such model allows the adversary to corrupt any strict subset of the servers or
the output client, and an arbitrary number of input clients. Beyond being round-optimal,
our MPC protocol has several interesting properties. First, it can be instantiated from
any multi-key linearly homomorphic encryption (which can be constructed from the
DDH assumption [14]). Additionally, our HSS scheme is perfectly correct and thus
the transformation from HSS to MPC does not need to go through the probability
amplification step of [10]. It also inherits the efficiency features of the transformation of
Boyle et al. [11]: If |f | is the size of the circuit computing f , then

– the computational efficiency is |f | · poly(λ) · n3 when m = O(1) or m = n, and
– the output client complexity is bounded by |f | · poly(λ) ·m.

1.3 Our Techniques

We illustrate the basic ideas behind our HSS scheme with a simple example, where two
servers wish to privately compute the function f(x, y, z) = xyz, for some values x, y,
and z belonging to a ring R. The client computes a standard 2-out-of-2 Shamir’s secret
sharing of each input and arranges the shares into the following matrix:

T :=

x1 x2
y1 y2
z1 z2

 s.t. T
[
1
1

]
=

xy
z

 .
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In the following, boxed shares are encrypted shares under a linearly homomorphic
encryption scheme HE (assume for the moment under the same public key). The client
then distributes the shares to the two servers (S1,S2) as follows:

S1 ←

 x1 x2
y1 y2

z1 z2

 S2 ←

x1 x2
y1 y2

z1 z2


It is not hard to see that distributing the shares in that way does not reveal any information
to either of the servers. This follows from the the semantic security of the encryption
scheme because each server alone cannot recover the plain value of the original inputs.
Now, we show how the two servers can jointly compute the function f over the inputs x,
y, and z. Let us expand the product

xyz = (x1 + x2)(y1 + y2)(z1 + z2) =
2∑
i=1

2∑
j=1

2∑
`=1

xiyjz`.

We now consider each term xiyjz` individually. By the pigeonhole principle, for each
combination of indices (i, j, `) ∈ {1, 2}3 there exists at least one server for which at
most one of the entries is encrypted. As an example, (1, 1, 2) is a “valid” set of indices
for S2, since it knows the plain values x1 and y1 and the encrypted share HE.Enc(pk, z2).
This implies that every monomial is computable by a server by treating the plaintext
entries as a constant and multiplying them to the encrypted entry, e.g.,

HE.Enc(pk, z2)x1·y1 = HE.Enc(pk, x1y1z2).

This kind of operations is supported by the encryption scheme since it is linearly
homomorphic. Let I1 ⊂ {1, 2}3 be the set of valid indices for the server S1, let
I2 := {1, 2}3 \ I1 be the set for S2, and let mi be the monomial indexed by the i-
th set of indices. Exploiting the homomorphic properties of the encryption scheme each
server computes

HE.Enc
(

pk,
∑
i∈I1

mi

)
← S1 HE.Enc

(
pk,
∑
i∈I2

mi

)
← S2

and sends the two ciphertext to the client. The client (who knows the secret key) can
decrypt and sum the plaintexts up to recover the result of the computation:

∑
i∈I1

mi +∑
i∈I2

mi =
∑2
i=1
∑2
j=1

∑2
`=1 xiyjz` = xyz. Although the two plaintexts may con-

tain some information of the intermediate values of the computation, this can be easily
avoided by adding a dummy sum of two shares of 0. This immediately extends to the
computation of any degree-3 polynomial.

Increasing the degree of the polynomial. The next observation is that, using the same
principle, increasing the number of servers also increases the degree of the polynomial
that can be computed. The inputs are shared across m servers with the same strategy and
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the view of each server looks as follows:

Sj ←


x1 . . . xj−1 xj xj+1 . . . xm
...

. . .
...

...
...

. . .
...

z1 . . . zj−1 zj zj+1 . . . zm


Products are computed as before and a simple combinatorial argument shows that the
maximum degree computable is d = 2m−1. Extending to an arbitrary amount of servers
introduces some subtlety in the splitting of monomials since now one combination of
indices might be computable by more than one server. Thus one needs to take some extra
care in the design of a suitable splitting function.

Furthermore, if we admit the existence of a homomorphic encryption scheme for
degree-k polynomials, then the degree computable by each server increases even more
since now k encrypted entry can be multiplied together locally. Our analysis shows that
the degree increases to d = (k + 1)m− 1.

Extensions. We consider some natural extensions of our HSS scheme. In a multi-key
HSS, clients can independently share their inputs such that servers can evaluate functions
over an arbitrary set of shares. Since the shares from different clients are tied to different
public keys, we need to upgrade the baseline homomorphic encryption scheme to a
multi-key homomorphic encryption scheme. For completeness, we also explore the
feasibility of increasing the corruption threshold t by increasing the amount of encrypted
entries per server (and decreasing the maximum supported degree d).

1.4 Related Work

Similar techniques on splitting the evaluation of polynomials have been used in the
context of simultaneous-message multiparty computation [2] and private information
retrieval [4]. Barkol et al. [3] leveraged a similar observation to prove an upper bound
on the degree of polynomials computable by any information theoretic secret sharing
scheme. Another closely related work is by Franklin and Mohassel [21], who propose
a two party computation protocol for degree-3 polynomials. However, their protocol is
interactive and therefore does not imply a homomorphic secret sharing scheme.

2 Preliminaries

Notations. We denote by λ ∈ N the security parameter and by poly(λ) any function
that is bounded by a polynomial in λ. We address any function that is negligible in the
security parameter with negl(λ). An algorithm is PPT if it is modeled as a probabilistic
Turing machine whose running time is bounded by some function poly(λ). Given a set
S, we denote by x← S the sampling of an element uniformly at random in S and by
[n] we denote the set of integers {1, . . . , n}. In the following we recall the definition of
statistical distance.
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Definition 1 (Statistical Distance). Let X and Y be two random variables over a finite
set U . The statistical distance between X and Y is defined as

SD [X,Y ] = 1
2
∑
u∈U
|Pr[X = u]− Pr[Y = u]| .

2.1 Homomorphic Encryption

For conciseness, in the remaining of this section, we work with multivariate polynomials
with the number of variables fixed to n. All results can be generalized to the case with un-
bounded number of variables. Formally, letR be a (finite) ring andR := R[X1, . . . , Xn]
be the ring of n-variate polynomials over R. Let Rd := {f ∈ R : deg(f) ≤ d} be
a set of such polynomials of degree at most d. We recall the notion of homomorphic
encryption, for which we assume that the message domainM of the scheme is a finite
ring R that is publicly known and where it is possible to efficiently sample uniformly
distributed elements (e.g., [7,14,29], see [15] for a more comprehensive list).

Definition 2 (Homomorphic Encryption (HE)). A public key homomorphic encryp-
tion scheme HE = (KGen,Enc,Eval,Dec) over degree-d polynomials Rd, consists of
the following PPT algorithms:

KGen(1λ) : The key generation algorithm takes as input the security parameter λ and
outputs the public key pk and the secret key sk.

Enc(pk,m) : The encryption algorithm takes as input the public key pk and the message
m ∈M; it returns a ciphertext c ∈ C.

Eval(pk, f, (c1, . . . , cn)) : The evaluation algorithm takes as input the public key pk, a
polynomial f ∈ Rd, and a vector of n ciphertexts (c1, . . . , cn) ∈ Cn; it returns a
ciphertext c ∈ C.

Dec(sk, c) : The decryption algorithm takes as input the private key sk and a ciphertext
c ∈ C; it returns a plaintext m ∈M.

Correctness. A homomorphic encryption scheme has decryption correctness if for any
λ ∈ N, any (pk, sk) ∈ KGen(1λ), and any message m ∈M, we have that

Pr[Dec(sk,Enc(pk,m)) = m ] ≥ 1− negl(λ)

where the probability is taken over the random coins of Enc.
A homomorphic encryption scheme has (2-hop) evaluation correctness if

for any λ ∈ N, any (pk, sk) ∈ KGen(1λ), any polynomials f, f1, . . . , fn ∈ R
such that f(f1, . . . , fn) ∈ Rd, any messages m,mi ∈ M for i ∈ [n] where
m = f(f1(m1, . . . ,mn), . . . , fn(m1, . . . ,mn)), we have that

Pr
[
Dec(sk, c) = m : ∀i ∈ [n], ci ← Enc(pk,mi),

c← Eval(pk, f, (c1, . . . , cn))

]
≥ 1− negl(λ)

where the probability is taken over the random coins of Enc and Eval. The scheme is
perfectly correct if the above probabilities are exactly 1.
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Compactness. We sometimes require a homomorphic encryption scheme to be compact.
This imposes a bound on the size of the output of Eval: The size of the output (and
consequently the running time of Dec) must be independent from the size of the evaluated
polynomial (e.g., when expressed as a circuit) [22].

Security. The security of a homomorphic encryption scheme is the standard notion of
semantic security introduced by Goldwasser and Micali [26].

Definition 3 (Semantic Security). A homomorphic encryption scheme HE is IND-CPA-
secure (has indistinguishable messages under chosen plaintext attack) if for any PPT
adversary A = (A1,A2) there exists a negligible function negl(λ) such that

Pr
[
b = b′ : (pk, sk)← KGen(1λ), (m0,m1, state)← A1(pk),

b← {0, 1}, c← Enc(pk,mb), b′ ← A1(state, c)

]
≤ 1

2 + negl(λ)

where the probability is taken over the random coins of b, KGen, and Enc.

Circuit Privacy. In the context of homomorphic encryption, semantic security might be
per se not sufficient to guarantee the secrecy of the encrypted messages. In particular,
the output of Eval may still contain some information about the messages encrypted in
the input ciphertexts. This leakage is ruled out by the notion of circuit privacy [12].

Definition 4 (Circuit Privacy). A homomorphic encryption scheme HE is circuit-
private with respect to a family of functions F , if there exists a PPT simulator SHE
and a negligible function negl(λ) such that for any λ ∈ N, any (pk, sk) ∈ KGen(1λ),
any f ∈ F , any vector of messages (m1, . . .mn) ∈Mn, and any vector of ciphertexts
(c1, . . . , cn) ∈ Cn such that for all i ∈ {1 . . . t} : ci ∈ Enc(pk,mi), we have that

SD
[
Eval(pk, f, (c1, . . . , cn)),SHE(1λ, pk, f(m1, . . . ,mn))

]
≤ negl(λ) .

Multi-Key Homomorphic Encryption. The above definition of homomorphic encryption
can be extended to the multi-client settings with minimal changes. To do so, we consider
the scenario of n clients, each holding an independent key pair (pki, ski): The key
generation and encryption algorithms are unchanged whereas the evaluation and the
decryption algorithms take as input vectors of public and secret keys, respectively,
and are defined as Eval((pk1, . . . , pkn), f, (c1, . . . , cn)) and Dec((sk1, . . . , skn), c). The
definitions of correctness and circuit privacy can easily be modified accordingly.

The (lifted) ElGamal encryption scheme [19] is an example of multi-key homo-
morphic encryption. Informally, given the ciphertexts (gr, hr1gm1) and (gs, hs2gm2) of
m1 and m2 under the keys h1 = gx1 and h2 = gx2 respectively, one can compute
(gr, gs, hr1hs2gm1+m2) as a ciphertext ofm1 +m2 under the combined key (h1, h2). The
decryption of lifted ElGamal requires the computation of a discrete logarithm and there-
fore it is important that the evaluated message lies in a polynomial space. To overcome
this limitation, one can use the variant of Castagnos and Laguillaumie [14].
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3 Definition of Homomorphic Secret Sharing

We define a variant of homomorphic secret sharing [9] in the public-key setup model.
Our variant considers three parties: one output client, many input clients, and many
servers. The output client provides the setup, meaning that it generates a public and
a secret key and it shares the public key among all participants. Furthermore, it also
computes the final result. The input clients secret share their inputs as “input shares” to
all servers. The servers homomorphically evaluate functions, in our case polynomials,
over the input shares to obtain “output shares”. These output shares are then sent to the
output client, who uses its secret key to decode them.

The definition can be generalized to the multi-output- client (or multi-key) setting,
where different parties receive the output of the computation. The definition can also be
lifted to the plain model by simply removing the key generation algorithm and letting all
public and secret keys inputs be empty strings.

Definition 5 (Homomorphic Secret Sharing (HSS)). An n-input (1-output) m-server
homomorphic secret sharing scheme for degree-d polynomialsRd (with public-key setup)
HSS = (KGen,Share,Eval,Dec) consists of the following PPT algorithms / protocols:

(pk, sk)← KGen(1λ) : On input the security parameter 1λ, the key generation algo-
rithm outputs a public key pk and a secret key sk.

(si,1, . . . , si,m)← Share(pk, i, x) : Given a public key pk, an input index i ∈ [n], and
an input x ∈ R, the sharing algorithm outputs a set of shares (si,1, . . . , si,m).

yj ← Eval(pk, j, f, {si,j}i∈[n]) : The evaluation protocol is executed by a server Sj on
inputs the public key pk, an index j, a degree-d polynomial f , and the corresponding
tuple of shares (si,j)i∈[n]. Upon termination, the serverSj outputs the corresponding
output share yj .

y ← Dec(sk, (y1, . . . , ym)) : On input a secret key sk and a tuple of output shares
(y1, . . . , ym), the decoding algorithm outputs the result y of the evaluation.

Correctness. An n-input m-server HSS scheme for degree-d polynomialsRd is correct
if for any λ ∈ N, any m,n ∈ poly(λ), any (pk, sk) ∈ KGen(1λ), any f ∈ Rd, any
n-tuple of inputs (x1, . . . , xn) ∈ Rn, it holds that

Pr

Dec(sk, (y1, . . . , ym)) = f(x1, . . . , xn) :
∀i ∈ [n], (si,1, . . . , si,m) ∈ Share(pk, i, xi),
∀j ∈ [m], yj ∈ Eval(pk, j, f, {si,j}i∈[n])

 ≥ 1− negl(λ) ,

where the probability is taken over the random coins of Share and Eval. The scheme is
perfectly correct if the above probability is exactly 1.

Security. The security of a HSS scheme guarantees that no information about the message
is disclosed to any subset of servers of size at most t.

Definition 6 (Security). An n-input m-server HSS scheme is t-secure if for any λ ∈
N there exists a negligible function negl(λ) such that for any PPT algorithm A =
(A0,A1), ∣∣Pr

[
Security0

A,HSS = 1
]
− Pr

[
Security1

A,HSS = 1
]∣∣ < negl(λ)
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SecuritybA,HSS(1λ) :

(pk, sk)← KGen(1λ)
(x0, x1, J, st)← A0(pk)
(s1, . . . , sm)← Share(pk, xb)
b′ ← A1(st, {sj : j ∈ J})
b0 := (J ⊆ N ∧ |J | ≤ t)
b1 := (b = b′)
return b0 ∧ b1

Context-HidingbA,S,HSS(1λ) :

(pk, sk)← KGen(1λ)
(f, x1, . . . , xn, st)← A0(pk)
if b = 0 then

(si,1, . . . , si,m)← Share(pk, i, xi) ∀i ∈ [n]
yj ← Eval(pk, j, f, {si,j}i∈[n]) ∀j ∈ [m]

elseif b = 1 then

(y1, . . . , ym)← S(1λ, pk, f(x1, . . . , xn))
endif
b′ ← A1(st, (y1, . . . , ym))
return 1 iff b′ = b

Fig. 1: Security experiments for (∗,m, t)-HSS

where SecuritybA,HSS is defined in Figure 1 for b ∈ {0, 1}.

For conciseness, we refer to an n-input, m-server, t-secure homomorphic secret
sharing scheme as an (n,m, t)-HSS. If the number of inputs is unbounded, we denote it
by (∗,m, t)-HSS.

Robustness. An (n,m, t)-HSS scheme is r-robust if it suffices for the output client to
collect output shares from any r out of m servers to recover the computation result.

Context Hiding. In the setting of outsourced computations, the party who decrypts may
be different from the one who provides the inputs of the computation or determines the
function to be computed. For this reason, Catalano and Fiore [15] introduced the notion
of context-hiding, which assures that the decrypting party learns nothing beyond the
output of the computation.

Definition 7 (Context Hiding). A (n,m, t)-HSS scheme is context-hiding if for any
λ ∈ N there exists a PPT simulator S and a negligible function negl(λ) such that for
any PPT algorithm A = (A0,A1),∣∣∣Pr

[
Context-HidingbA,S,HSS = 1

]
− Pr

[
Context-HidingbA,S,HSS = 1

]∣∣∣ < negl(λ)

where Context-HidingbA,S,HSS is defined in Figure 1 for b ∈ {0, 1}.

Multi-Key HSS. Homomorphic secret sharing can be easily generalized to the multi-
key/multi-input-client settings by extending the evaluation protocol so that all servers take
as input all public keys of the participating output clients, and the decryption algorithm
takes as input all of the corresponding secret keys. While the definition of security is
unchanged and is required to hold for each secret key, the definitions of correctness,
robustness, and context-hiding are extended accordingly.
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4 Main Construction in the Public-Key Model

Let m and k be positive integers. We present a generic construction of an unbounded-
input (1-output) m-server 1-secure homomorphic secret sharing ((∗,m, 1)-HSS) scheme
HSS for degree-d polynomialsRd in the public-key model, where d = (k+1)m−1. Our
construction is generic and relies only a public key homomorphic encryption scheme HE
for degree-k polynomials. We analyze the efficiency of our construction in Section 4.3
and show that it satisfies the security definitions for an HSS scheme in Section 4.4.
For the sake of simplicity, we initially assume a public-key setup and we show how to
upgrade it to the plain model in Section 5.

4.1 Construction

In the following we provide the reader with an intuitive description of our main construc-
tion and we refer to Figure 2 for a formal description.

Key Generation. On input the security parameter, the output client generates the keys of
the encryption HE scheme and publishes the public key.

Secret Sharing. To secret share a ring element xi ∈ R, the input client samples random
base secret shares xi,j ← R for j ∈ [m] subject to the constraint that

∑
j∈[m] xi,j = xi.

It then encrypts each share xi,j for i ∈ [n], j ∈ [m] as x̃i,j . Similarly, base shares of
0 are randomly sampled as (zi,1, . . . , zi,m) ∈ Rm such that

∑
j∈[m] zi,j = 0. For each

j′ ∈ [m], the resulting j′-th secret share of (x1, . . . , xn) consists of all plaintext base
shares xi,j for all i ∈ [n] and j ∈ [m] \ {j′}, the encrypted base shares x̃i,j′ for all
i ∈ [n], and the plain 0-shares zi,j′ for all i ∈ [n]. The process of creating a share si,j′ is
visualized below and formalized in Figure 2.

0 Base Share→
[
zi,1 · · · zi,m

]
xi

Base Share→
[
xi,1 · · · xi,j′−1 xi,j′ xi,j′+1 · · · xi,m

]
HE.Enc→

[
xi,1 · · · xi,j′−1 x̃i,j′ xi,j′+1 · · · xi,m zi,j′

]
:= si,j′

Evaluation. Let f ∈ Rd be an n-variate polynomial of degree at most d for some n ∈
poly(λ). Without loss of generality, suppose the servers are to homomorphically evaluate
f over xi for i ∈ [n] which have been secret shared as (si,1, . . . , si,m) respectively2. To
do so, Sj locally evaluates a function fj over its shares (s1,j , . . . , sn,j), to be explained
below. We will construct (for each d) a function Splitd that splits f into some polynomials
g1, . . . , gm, with the following properties:

1. If
∑
j∈[m] xi,j = xi, then f(x1, . . . , xn) =

∑
j∈[m] gj(x1,j , . . . , xn,j).

2 In general, i can be picked from any index set I ⊂ N of size n.
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2. For all i ∈ [n] and j ∈ [m], fix xi,j such that
∑
j∈[m] xi,j = xi. Let x−ji =

(xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,m). Then for each j ∈ [m], gj is an n-variate poly-
nomial over (x1,j , . . . , xn,j) of degree at most k, whose coefficients are uniquely
determined by f and (x−j1 , . . . , x−jn ), denoted by gj = Splitd(j, f, (x

−j
1 , . . . , x−jn )).

Note that f and (x−j1 , . . . , x−jn ) are known by server Sj in plaintext. Since the underlying
encryption scheme supports degree k polynomials, Sj can evaluate fj = gj+

∑
i∈[n] zi,j

over the encrypted base shares (x̃1,j , . . . , x̃n,j) to obtain the output share yj , which is a
ciphertext encrypting gj(x1,j , . . . , xn,j) +

∑
i∈[n] zi,j .

It remains to show how to construct the Splitd function. Let f = f(X1, . . . , Xn) be a
polynomial of degree d, write f =

∑
w awMw(X1, . . . , Xn), where Mw are monomials

of some degree c ≤ d, where c depends on w, with coefficients aw. For each w, consider
the monomial Mw(X1, . . . , Xn) = Xw1Xw2 · · ·Xwc for some (possibly duplicating)
indices w1, . . . , wc ∈ [n]. Next, by defining a set of new variables Xi,j for all i ∈ [n]
and j ∈ [m] and substituting Xi =

∑
j∈[m] Xi,j , we can expand the monomial Mw as

Mw(X1, . . . , Xn) = Xw1Xw2 · · ·Xwc

=
∏

i∈{w1,...,wc}

 m∑
j=1

Xi,j


= Xw1,1 · · ·Xwc,1 + . . .+Xw1,m · · ·Xwc,m

=
∑
e∈[m]c

Xw1,e1 · · ·Xwc,ec .

We now inspect the summand Xw1,e1 · · ·Xwc,ec . Recall that c ≤ d = (k + 1)m − 1.
By the (dual of) pigeonhole principle, any way of writing c as a sum of m non-negative
integers must contain a summand which is at most k, where the “worst case” is c =
(k + 1) + . . .+ (k + 1)︸ ︷︷ ︸

m−1

+k. In other words, for each summandXw1,e1 · · ·Xwc,ec , there

exists an index j ∈ {e1, . . . , ec} which appears at most k times in the expression.
Furthermore, such an index j can be chosen deterministically by a publicly known
algorithm. For the moment, we will continue the description of the construction without
specifying explicitly such an algorithm. In Section 4.3 we will give two explicit examples
and analyze their efficiency.

With this observation in mind, we can rewrite each monomial Mw as

Mw(X1, . . . , Xn) =
∑
e∈[m]c

Xw1,e1 · · ·Xwc,ec

=
∑
j∈[m]

hw,j [X−j1 , . . . , X−jn ](X1,j , . . . , Xn,j)

where X−ji = (Xi,1, . . . , Xi,j−1, Xi,j+1, . . . , Xi,n) is defined similar to x−ji , and each
term hw,j [X−j1 , . . . , X−jn ](X1,j , . . . , Xn,j) is the sum over the subset of all summands
with j being the chosen index as defined by the property above. Note that each hw,j can
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(pk, sk)← KGen(1λ)

(pk, sk)← HE.KGen(1λ)
return (pk, sk)

y ← Dec(sk, y1, . . . , ym)

c← HE.Eval(pk, fAdd, (y1, . . . , ym))
y ← HE.Dec(sk, c)
return y

(si,1, . . . , si,m)← Share(pk, i, xi)

(xi,1, . . . , xi,m)← Rm s.t.
∑
j∈[m]

xi,j = xi

(zi,1, . . . , zi,m)← Rm s.t.
∑
j∈[m]

zi,j = 0

x̃i,j ← HE.Enc(pk, xi,j) ∀j ∈ [m]

x−ji := (xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,m)

si,j := (x−ji , x̃i,j , zi,j)
return (si,1, . . . , si,m)

yj ← Eval(j, f, (s1,j , . . . , sn,j))

parse si,j as (x−ji , x̃i,j , zi,j)

fj := Splitd(j, f, (x
−j
1 , . . . , x−jn )) +

∑
i∈[n]

zi,j

yj ← HE.Eval(pk, fj , (x̃1,j , . . . , x̃n,j))
return yj

Fig. 2: Construction of a homomorphic secret sharing scheme HSS in the public-key
setup model. (The functions fAdd and Splitd are defined in the text description.)

be interpreted as a degree-k (at most) polynomial over X1,j , . . . , Xn,j , with coefficients
depending on X−j1 , . . . , X−jn .

Finally, we can rewrite the polynomial f(X1, . . . , Xn) as

f(X1, . . . , Xn) =
∑
w

awMw =
∑
w

aw
∑
j∈[n]

hw,j =
∑
j∈[m]

∑
w

awhw,j .

Since each hw,j is a degree-k polynomial over X1,j , . . . , Xn,j , we can define gj :=∑
w awhw,j which is a degree-k polynomial function over X1,j , . . . , Xn,j , with coeffi-

cients uniquely determined by f and X−j1 , . . . , X−jn . This completes the construction of
the Splitd function.

Decoding. Let fAdd(Y1, . . . , Ym) = Y1 + . . . + Ym. Since fAdd is of degree-1, its
homomorphic evaluation is supported by HE. Thus, given the output shares y1, . . . , ym
(which are HE ciphertexts), the output client can homomorphically evaluate fAdd over
y1, . . . , ym, which are ciphertexts encrypting fj(x−j1 , . . . , x−jn ) respectively. By the
construction of fj , the evaluation yields a ciphertext encrypting f(x1, . . . , xn), which
can then be decrypted using sk.

Correctness. Note that by condition 2 of the Splitd algorithm the function gj (and
consequently fj) is of degree at most k. Therefore the polynomial fAdd(f1, . . . , fm) is

12



of degree at most k. By the evaluation correctness of HE, we have that

y = HE.Dec(sk, c) =
∑
j∈[m]

gj(x1,j , . . . , xn,j) +
∑
i∈[n]

∑
j∈[m]

zi,j

except with negligible probability. By condition 1 of the Splitd algorithm and since for
all i ∈ [n] it holds that

∑
j∈[m] zi,j = 0, we have that

y =
∑
j∈[m]

gj(x1,j , . . . , xn,j) +
∑
i∈[n]

∑
j∈[m]

zi,j

= f(x1, . . . , xn) +
∑
i∈[n]

0 = f(x1, . . . , xn).

Note that if HE is perfectly correct, then HSS is also perfectly correct.

Remark 1 (The case k = 0). For completeness, we remark that the construction still
works for the case of k = 0 (i.e., HE is a public-key non-homomorphic encryption) for
the most part, except that “homomorphic evaluations” (in the evaluation protocol and
the decoding algorithm) are performed over the plaintext shares rather than ciphertexts.
The ciphertexts can actually be discarded or not created in the first place.

4.2 Discussion

In the following we first argue that our techniques are “tight” with respect to the degree of
the polynomial to be computed. Then we discuss some function-dependent optimizations
that we can apply to improve the efficiency of our protocol.

On the upper bound of the supported degree d. In our construction, we showed that it
is possible to support the evaluation of polynomials of degree at most (k + 1)m − 1
using m servers. By a counting argument, we can show that (k + 1)m − 1 is
also the maximum possible supported degree of our construction. Suppose the
n servers were to evaluate a degree (k + 1)m polynomial f , then f contains a
monomial Mw =

∑
j1,...,jcw∈[m] Xiw,1,j1 · · ·Xiw,cw ,jcw

of degree (k + 1)m which
contains a summand Xiw,1,j1 · · ·Xiw,cw ,jcw

in which each j ∈ {j1, . . . , jcw} = [m]
appears exactly k + 1 times in the expression. Thus, it is impossible to write
Mw =

∑
j∈[m] hw,j [X

−j
i1
, . . . , X−jic ](Xiw,1,j , . . . , Xiw,cw ,j

) such that each hw,j is a
polynomial of degree at most k. In fact, no matter how the indices j are chosen, there
must exists hw,j which is of degree at least k + 1.

On computing polynomials with a subset of servers. A naı̈ve usage of our HSS scheme
requires one to query all of them servers even when the degree of the polynomial is lower
than d. In fact, a smaller number of servers could be used, with the following modification:
Consider any subset M ⊆ [m] and any ordering of its indices (say lexicographical). All
base shares of each input xi = (xi,1, . . . , xi,m) for m servers can be transformed into
base shares for any set of |M | servers by setting

xi
Base Share→

xi,j∗ +
∑
j /∈M

xi,j , {xi,j}j∈M\j∗


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where j∗ is the first element ofM . This operation can be computed also homomorphically
(when needed). Note that the resulting base share is a well-formed input for the set M .
Additionally one needs to provide each server with all of the 0-shares (zi,1, . . . , zi,m)
and apply the same transformation as described above. The resulting share si,j is a
correctly formed share for a set of |M | servers. Note that this operation can be performed
non-interactively by all servers belonging to M .

In another perspective, one can view this as a mechanism for performing the evalua-
tion (although for a lower degree polynomial) using only a subset of the servers of size
r, i.e., a r-robust HSS scheme. Using combinatorial arguments similar to those in Sec-
tion 4.1, one can conclude that any size-r subset of the m servers is able to evaluate
polynomials of degree km+ r − 1.

On arithmetic circuits of the form
∑∏∑

. In the construction of the Splitd function,
we assume that the polynomial f to be evaluated is given in the fully expanded form.
In general, the number of monomials in a fully expanded polynomial of degree d is
exponential in d. It is therefore desirable if the Splitd function can handle representations
of polynomials f which are not fully unrolled. In certain special cases, this might
save an exponential factor (of the number of monomials and hence server computation
complexity) in the degree of the polynomial.

Our observation is that in our construction, computing linear functions over
the inputs is essentially “free”: Given a linear function L(X1, . . . , Xn), and a set
of shares {si,j}ni=1 = {(x−ji , x̃i,j , zi,j)}ni=1, each server Sj can locally compute
x′j′ = L(x1,j′ , . . . , xn,j′) for j′ 6= j, and x̃′j = HE.Eval(pk,L, (x̃1,j , . . . , x̃n,j)), which
constitutes essentially the j-th share of the value L(x1, . . . , xn).

With the above observation in mind, we notice that if f is given in the (
∑∏∑

)-form
f =

∑v
w=1 aw

∏d
i=1 Lw,i(X1, . . . , Xn), i.e., the sum of products of d linear functions

over X1, . . . , Xn, the servers can first locally evaluate the linear functions and treat the
result as shares of additional inputs, then apply the Splitd function on these new inputs.
Note that even if f consists of only one product of d linear functions, the fully expanded
form of f would contain (n+ 1)d monomials in general. This class of functions may
be of particular interest since there exists a generic efficient transformation [23], due
to an observation by Ben-Or, from any multilinear symmetric polynomial to depth-3
(
∑∏∑

)-arithmetic circuits.

4.3 Efficiency Analysis

We analyze the efficiency of the construction in terms of server communication and
computation complexity. The client-server communication is that of one ciphertext
and therefore is independent from the size of the function that is computed, under the
assumption that the underlying encryption scheme is compact. The input and output
clients computation complexity is dominated by m calls to the encryption algorithm and
one decryption, respectively.

The complexity of server computation depends on the design of the Splitd functions.
Below, we first analyze a simpler greedy design where the workload is distributed to the
servers unevenly. Next, we analyze a fair design in which the workload of each server is
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identical. Surprisingly, the fair design seems to be worse than the greedy design in terms
of computation complexity for k > 1.

We assume the polynomial f to be evaluated is given in the form f =∑
w awMw(X1, . . . , Xn), where Mw are monomials of degree at most d. The efficiency

analysis can be adapted easily to the setting where f is given as a sum of product of
linear functions.

To bound the computation complexity of the servers, it is useful to use the following
upper bounds, which can be verified straightforwardly:(

n

r1, . . . , rm, n− r1 − . . .− rm

)
≤ (en)r1+...+rm

rr1
1 · . . . · r

rm
m

(1)(α
r

)r
≤ eαe (2)

where the multinomial coefficient
(

n
r1,...,rm,n−r1−...−rm

)
denotes the number of ways to

distribute n distinct objects into m+ 1 bins, with rj objects in the j-th bin for j ∈ [m],
and n− r1 − . . .− rm objects in the last bin, and e is Euler’s constant.

The Greedy Approach. One natural choice of Splitd is the greedy one: For each monomial
Mw =

∏
i∈{w1,...,wc}

(∑m
j=1 xi,j

)
in f , the first server (according to some fixed order)

computes as many monomials in Mw as possible, then the second server computes as
many monomials as possible except those which are already computed by the first server,
and so on. We assume that each polynomial is given in the expanded form (as a sum of
monomials). In turn, each monomial Mw is the product of several terms Xw1 · · ·Xwc

for some c ∈ [d], where each term Xi is shared as Xi := xi,1 + . . .+ xi,m for i ∈ [n].
This defines a circuit of depth 3 with (n+ 1) sum gates.

As computing sums are essentially free, we analyze the computation complexity of
each of the servers, in terms of the number of product gates of the arithmetic circuit
evaluated. It is useful to consider the following matrix:

T :=


xw1,1 xw1,2 . . . xw1,m

xw2,1 xw2,2 . . . xw2,m

...
...

. . .
...

xwc,1 xwc,2 . . . xwc,m

 .
All monomials inMw can be obtained by multiplying c elements, such that each of which
is chosen from a distinct row of T . The monomials that the first server can compute
(homomorphically) consists of those obtained by multiplying at most k elements from
the first column. One (efficient) way to compute the sum of these monomials is to first
sum up the last m− 1 elements in each row i as vi =

∑
j>1 xwi,j , compute the products

obtained by multiplying ` terms in {xw1,1, . . . , xwc,1} and (c− `) terms in {v1, . . . , vc}
for ` ∈ {0, . . . , k}, and sum up all products. The circuit for computing the above consists
of
∑k
`=0
(
c
`

)
product gates.

The second server computes all monomials obtained by multiplying at most k ele-
ments from the second column, except those already computed by the first server. A way
to compute this is first sum up the lastm−2 elements in each row i as vi =

∑
j>2 xwi,j ,
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compute the products obtained by multiplying `1 terms in {xw1,1, . . . , xwc,1}, `2 terms in
{xw1,2, . . . , xwc,2}, and `3 = (c−`1−`2) terms in {v1, . . . , vc} for `1 ∈ {k+1, . . . , c}
and `2 ∈ {0, . . . , k} such that `1 + `2 ≤ c, and sum up all products. The number of
product gates in the circuit for computing the above is given by∑

`1, `2 :
`1 + `2 ≤ c

`1 ∈ {k + 1, . . . , c}
`2 ∈ {0, . . . , k}

(
c

`1, `2, c− `1 − `2

)
.

Proceeding this way, we can derive that the number of product gates in the circuit
evaluated by the j-th server is given by∑

`1, . . . , `j :
`1 + . . . + `j ≤ c

`1, . . . , `j−1 ∈ {k + 1, . . . , c}
`j ∈ {0, . . . , k}

(
c

`1, . . . , `j , c− `1 − . . .− `j

)

≤
∑

`1, . . . , `j :
`1 + . . . + `j ≤ c

`1, . . . , `j−1 ∈ {k + 1, . . . , c}
`j ∈ {0, . . . , k}

c`1+...+`j

``1
1 . . . `

`j
j

=
∑

`1, . . . , `j :
`1 + . . . + `j ≤ c

`1, . . . , `j−1 ∈ {k + 1, . . . , c}
`j ∈ {0, . . . , k}

∏
`∈{`1,...,`j}

(c
`

)`

≤(k + 1)(c− k − 1)j−1jec/e

≤(k + 1)(c− k − 1)m−1mec/e

=O(mm)
=O(2m logm)

In order for the computation complexity of the servers to be polynomial, we set m =
O
(

logλ
log logλ

)
. Then, assuming f contains polynomially many monomials (or products

of linear functions), the computation complexity of each server is bounded by

poly(λ) ·O(2m logm) = O
(

2
logλ

log logλ log( logλ
log logλ )

)
< O(2logλ) = poly(λ)

The Fair Approach. Observe that in the greedy approach (the upper bound of) the
workload of the j-th server increases as j increases, meaning that the distribution of work
is unfair. This is undesirable since the overall computation time is determined by that
of the slowest server. If the workload is distributed evenly, it might be possible that the
workload of each server is lower than that of the slowest server in the greedy approach.

We denote by a vector (`1, . . . , `m) (where
∑
j∈[m] `j = d) the classification of

monomials obtainable by multiplying `j terms in the j-th column of T . For example,
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consider the case k = 1, m = 3, and d = (k + 1)m − 1 = 5. The monomial with
classification (1, 2, 2) can only be computed by the server with the first column encrypted,
which is S1. Similarly, both S1 and S2 can compute monomials in the class (0, 1, 4).

With the above observation in mind, we can design the Splitd function such that each
server computes a weighted-sum of all monomials it can compute, where the monomials
of a class that δ-many servers can compute are assigned the weight 1/δ (assuming the
message space R is also a field)3. The servers can thus group monomials of the same
weight together, and try to reduce the number of multiplications as much as possible.

In the following, we describe one of the ways to group monomials, which is iden-
tical for all servers. Consider Sj . To obtain the sum of all monomials which are only
computable by Sj , it chooses from each of the m− 1 columns besides its own (column
j) k + 1 terms. This makes sure that no matter how the remaining k terms are chosen,
the resulting monomials are only computable by Sj . Due to the latter, it simply sum
each of the remaining k rows where terms are not yet chosen, and multiply them to all
(k + 1)(m− 1) terms chosen in the beginning. Note that the number of ways to choose
those (k + 1)(m− 1) terms is given by

S1 :=
(
m− 1
m− 1

)(
c

k + 1, . . . , k + 1︸ ︷︷ ︸
m−1

, k

)

≤
k∑

`1=0

(
m− 1
m− 1

)(
c

k + 1, . . . , k + 1︸ ︷︷ ︸
m−1

, `1, c− (k + 1)(m− 1)− `1

)
,

where inequality will be useful for the analysis later. Summing all S1 polynomials
obtained by the above procedures (and assigning weight 1 to them) covers all monomials
that are only computable by Sj .

Moving on, to obtain the sum of all monomials which are only computable by Sj
and one other servers, Sj chooses m− 2 columns out of the other m− 1 columns, and
chooses k + 1 terms each from these m− 2 columns. Let j′ be the column which is not
chosen. It then chooses `1 items from its own column (from the remaining rows), and `2
items from column j′, such that `1, `2 ∈ {0, . . . , k}. This ensures that both Sj and Sj′
and no server else can compute these monomials. Next, it sums up the elements in each
of the remaining rows in the m− 2 chosen columns, and multiplies each sum with the
(k + 1)(m− 2) + `1 + `2 terms chosen before. Note that the number of ways to choose
those (k + 1)(m− 2) + `1 + `2 terms is given by

S2 :=
k∑

`1,`2=0

(
m− 1
m− 2

)(
c

k + 1, . . . , k + 1︸ ︷︷ ︸
m−2

, `1, `2, c− (k + 1)(m− 2)− `1 − `2

)
.

Summing all S2 polynomials obtained by the above procedures and assigning weight 1/2
to them covers all monomials that are only computable by Sj and exactly one other server.
Continue in this way, we conclude that the number of product gates for Sj is given by

3 In general, it suffices for the servers to assign weights which add up to 1.
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S :=
m−1∑
i=1

k∑
`1,...,`i=0

(
m− 1
m− i

)(
c

k + 1, . . . , k + 1︸ ︷︷ ︸
m−i

, `1, . . . , `i, c− (k + 1)(m− i)− `1 − . . .− `i

)
.

Using the inequality above, we have

S ≤
m−1∑
i=1

k∑
`1,...,`i=0

(
e(m− 1)
(m− i)

)m−i (ec)(k+1)(m−i)+`1+...+`i

(k + 1)(k+1)(m−i)``1
1 · . . . · `

`i
i

=
m−1∑
i=1

(
e(m− 1)
(m− i)

)m−i (ec)(k+1)(m−i)

(k + 1)(k+1)(m−i)

k∑
`1,...,`i=0

∏
`∈{`1,...,`i}

(ec
`

)`
=
m−1∑
i=1

(
e(m− 1)(ec)(k+1)

(m− i)(k + 1)(k+1)

)m−i
(k + 1)i

(ec
`

)`
≤ (k + 1)m(m− 1)

2 exp
(

(m− 1)(ec)(k+1)

(k + 1)(k+1) + c

)
≤ O(2m

k

).

In order for the computation complexity of the servers to be polynomial, we set m =
O
(

log1/k λ
)

. Then, assuming f contains polynomially many monomials (or products
of linear functions), the computation complexity of each server is bounded by

poly(λ) ·O(2m
k

) = O(2(log1/k λ)k) = O(2logλ) = poly(λ) .

Note that for the case k = 1, i.e., a linearly homomorphic encryption is used, we can set
m = O(log λ), which is better than m = O

(
logλ

log logλ

)
set in the greedy approach.

4.4 Security Proof

We show that our construction is secure as per Definition 6 assuming HE is IND-CPA-
secure. Furthermore, if HE is circuit-private, then our construction is context hiding.

Theorem 2. Let HE be an IND-CPA-secure public key encryption scheme, then HSS
constructed in Figure 2 is a secure (∗,m, 1)-HSS scheme in the public-key setup model.

Proof. Suppose there exists an efficient adversary A which breaks the security of HSS
with non-negligible probability, we show how to construct another efficient adversary C
against the IND-CPA-security of HE.
C participates in the IND-CPA experiment of HE and receives pk which is for-

warded to A. The latter chooses x∗0, x
∗
1 ∈ R, and an index j∗ ∈ [m]. C samples

x1, . . . , xj∗−1, x
′
j∗+1, . . . , xm ← R, and sets xb,j∗ := x∗b−

∑
j∈[m]\{j∗} for b ∈ {0, 1}.

It then queries the challenge oracle of HE on (x0,j∗ , x1,j∗), and receives in return x̃j∗ .
Finally, it sends sj∗ := (x1, . . . , xj∗−1, x̃j∗ , xj∗+1, . . . , xn) toA. Eventually,A returns
a bit b′, which is forwarded by C to the IND-CPA experiment.

18



We analyze the success probability of C in breaking the IND-CPA-security of HE.
By construction, if b is the bit chosen by the challenge oracle of HE, C simulates the
SecuritybA,HSS experiment for A faithfully, i.e., the view of A simulated by C is identical
to that in SecuritybA,HSS. Therefore, the probability of C guessing b correctly is identical
to that of A breaking the security of HSS. This concludes our proof. ut

Theorem 3. Let HE be a circuit-private public key homomorphic encryption scheme,
then HSS constructed in Figure 2 is a context-hiding (∗,m, 1)-HSS scheme in the public-
key setup model.

Proof. We first describe the simulator S: On input the security parameter 1λ, the public
key pk, and the function output r, the simulator S samples some random (r1, . . . , rm)
under the constraint that

∑
j∈[m] rj = r and executes cj ← SHE(1λ, pk, rj), for all

j ∈ [m], where SHE is the simulator of HE. The simulator S returns (c1, . . . , cm).
We analyze the distribution of the output of the simulator S . Consider the output of

the Eval algorithm, for all j ∈ [m]. By the circuit privacy of HE we have that:

yj = HE.Eval(pk, fj , (x̃1,j , . . . , x̃n,j))
≈ SHE

(
1λ, pk, fj(x1,j , . . . , xn,j)

)
= SHE

1λ, pk, gj(x1,j , . . . , xn,j) +
∑
i∈[n]

zi,j


where ≈ denotes statistical indistinguishability. Consider any subset M ⊆ [m] of size
m− 1. Then for all j ∈M we have that:

yj ≈ SHE

1λ, pk, gj(x1,j , . . . , xn,j) +
∑
i∈[n]

zi,j


≈ SHE

(
1λ, pk, rj

)
for some rj ∈ R sampled uniformly at random, since there exists at least one (in fact all)
i ∈ [n] such that zi,j is sampled uniformly and independently in R. By the correctness
of HSS it must be the case that for j /∈M :

yj ≈ SHE

1λ, pk,
∑
j∈[m]

rj − r


which is exactly the output of the simulator S. ut

Multi-Use Context-Hiding. We point out that the standard definition of context-hiding
takes into account only one execution of the Eval algorithms, whereas in certain scenar-
ios it might be desirable to preserve context-hiding even when multiple functions are
evaluated over the same shares. We propose a simple modification of our scheme that
achieves the stronger version of the property: Instead of computing the shares for the
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value 0, the sharing algorithm initializes m keys for a certain pseudo-random function
PRF (κi,1, . . . , κi,m) and each server j is given (κi,j , κi,(j+1 mod m)). Then, for all
j ∈ [m], the function fj is defined as

fj := Splitd(j, f, (x
−j
1 , . . . , x−jn ))+

∑
i∈[n]

PRF(κi,j , f)−
∑
i∈[n]

PRF(κi,(j+1 mod m), f).

The analysis follows, with minor modifications, along the lines of what discussed above.

5 Multi-Key Construction in the Plain Model

In the following we show how to extend the scheme in Section 4 to the multi-key settings
(in the public-key setup model) and how to turn it into a plain model scheme.

5.1 Intuition

First, we observe that the main construction in Section 4 can be naturally extended to the
multi-key setting, where shares under different public keys are combined in the evaluation
algorithm. In this context, it is useful to distinguish between input and output clients:
The former provide the input data and share them to the same set of servers4 whereas
the latter decode the output of the computation. Note that these two sets of clients may
intersect arbitrarily. We stress that the clients are not assumed to communicate with each
other and can generate their input shares independently. Adapting our protocol to this
setting is surprisingly simple: In a nutshell, it is sufficient to replace the homomorphic
encryption scheme with the corresponding multi-key variant.

Next, we turn the multi-key construction into a plain model construction. The idea is
to let the input clients, instead of the output clients, generate in the share algorithm a
fresh pair of public and secret keys. They then secret share their data under the freshly
generated public key as in the multi-key construction, and further secret share the fresh
secret keys to all m servers using an m-out-of-m secret sharing scheme. The servers
evaluate the shares as in the multi-key construction, and forward the output shares along
with the shares of the secret keys to the output client. The latter recovers the secret keys
and uses them to decode the output shares as in the multi-key construction.

5.2 Construction

Below, we describe briefly the modifications made to the construction in Section 4 to
obtain a plain model scheme. A formal description is given in Figure 3. Let m and k be
positive integers. We present a generic construction of an unbounded-input (1-output) m-
server 1-secure homomorphic secret sharing ((∗,m, 1)-HSS) scheme pHSS for degree-d
polynomialsRd in the plain model, where d = (k + 1)m− 1, using only a public-key
multi-key homomorphic encryption scheme HE for degree-k polynomials.

Key Generation. In the plain model, key generation is no longer needed.
4 While sharing to different sets of servers is in general possible, it limits the class of polynomials

that can be computed. Specifically, if there exists a server picked by client i but not client j, then
any polynomial which contains a product of data contributed by both clients is not computable.
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(si,1, . . . , si,m)← Share(i, xi)

(pki, ski)← HE.KGen(1λ)
parse ski ∈ {0, 1}∗

(xi,1, . . . , xi,m)← Rm s.t.
∑
j∈[m]

xi,j = xi

(zi,1, . . . , zi,m)← Rm s.t.
∑
j∈[m]

zi,j = 0

(ski,1, . . . , ski,m)← {0, 1}m|ski| s.t. ⊕j∈[m] ski,j = ski
x̃i,j ← HE.Enc(pki, xi,j) ∀j ∈ [m]

x−ji := (xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,m)

si,j := (x−ji , x̃i,j , zi,j , pki, ski,j)
return (si,1, . . . , si,m)

yj ← Eval(j, f, (s1,j , . . . , sn,j))

parse si,j as (x−ji , x̃i,j , zi,j , pki, ski,j)
PK := (pk1, . . . , pkn)

fj := Splitd(j, f, (x
−j
1 , . . . , x−jn )) +

∑
i∈[n]

zi,j

y′j ← HE.Eval(PK, fj , (x̃1,j , . . . , x̃n,j))
yj := (y′j ,PK, sk1,j , . . . , skn,j)
return yj

y ← Dec(y1, . . . , ym)

parse yj as (y′j ,PK, sk1,j , . . . , skn,j)
ski := ⊕j∈[m]ski,j
c← HE.Eval(PK, fAdd, (y1, . . . , ym))
y ← HE.Dec((sk1, . . . , skn), c)
return y

Fig. 3: Construction of a homomorphic secret sharing scheme pHSS in the plain model.
(The functions fAdd and Splitd are defined in Section 4.1.)

Secret Sharing. An input client runs the key generation algorithm for a multi-key
homomorphic encryption scheme to generate a public key and a secret key independent
of other input clients. It then runs the same sharing algorithm (under the generated public
key) to share its private data. It also secret-shares the secret key of the encryption scheme
using an m-out-of-m secret sharing scheme. Finally, it appends the public key and the
j-th share of the secret key to the j-th input share given to the j-th server.

Evaluation. The evaluation performed by the servers is almost identical, except that the
evaluation algorithm of the multi-key homomorphic encryption scheme inputs ciphertexts
encrypted under different pubic keys and outputs a ciphertext encrypted under the set of
combined public keys. The shares of the secret keys remain untouched, and are forwarded
to the output client along with the output of the homomorphic evaluation.

Decoding. The output client collects all shares of all secret keys, and recovers them. As
in the previous construction, it homomorphically evaluates the output shares received
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from the servers and obtain a ciphertext encrypting the computation result. The only
difference is that now the result is encrypted under a set of public keys. The output client
thus uses all the recovered secret keys to decrypt the ciphertext and obtain the result.

The analyses of correctness, efficiency, and security are almost identical to those in Sec-
tion 4. We thus state the formal results and omit the proofs.

Theorem 4. Let HE be an IND-CPA-secure public-key encryption scheme, then pHSS
constructed in Figure 3 is a secure (∗,m, 1)-HSS scheme in the plain model.

Theorem 5. Let HE be a circuit-private public-key multi-key homomorphic encryption
scheme, then pHSS constructed in Figure 3 is a context-hiding (∗,m, 1)-HSS scheme in
the plain model.

6 Collusion-Resistance

The constructions in Section 4 and Section 5 are 1-secure, meaning that security is lost
as soon as two servers collude. We outline how the construction can be upgraded to
give a (∗,m, t)-HSS scheme which tolerates t > 1 colluding servers, and investigate the
effect on the supported degree d of the resulting secret sharing scheme.

Bounding the Number of Plaintext Base Shares. Unlike in the previous constructions,
where we use an m-out-of-m secret sharing scheme to generate base shares of each input
xi, we now use a b-out-of-b secret sharing scheme instead, where b is a new independent
variable. Suppose that for each xi, a certain choice of p out of b base shares of xi are
given in plaintext to a server. In the previous constructions, p = b− 1. This means any
two colluding servers collectively possess all base shares of xi in plaintext, and hence
are able to recover xi. To tolerate t colluding servers, we must set p and b such that
b > tp, so that any t colluding servers collectively possess at most tp < b out of b base
shares of each xi in plaintext, and are thus unable to recover any xi.

Bounding the Supported Degree of the Homomorphic Secret Sharing Scheme. Next, we
analyze the supported degree d of the resulting HSS scheme, assuming an encryption
scheme supporting degree k is used. Recall the matrix representation of the shares as
defined in Section 4.3. The goal of the servers is to jointly compute (homomorphically)
the product of the sums of each row, which can be rewritten as a sum of the products
obtained by choosing one element from each row. A product of d-many rows (and
therefore a degree d polynomial) is computable only if, for each monomial of such a
product, there exists at least one server where at most k elements of such a monomial
belong to the encrypted columns possessed by this server. A natural strategy to maximize
the degree is to let the server possessing the highest number of plaintext columns to
compute such a monomial. Let us rewrite k = (b− p)u+ v, for some quotient u and
remainder v. A “worst case” configuration is visualized as follows.

Encrypted Columns, k elements︷ ︸︸ ︷
u, . . . , u︸ ︷︷ ︸
b−p−v

, u+ 1, . . . , u+ 1︸ ︷︷ ︸
v

,

Plaintext Columns, d− k elements︷ ︸︸ ︷
u+ 1, . . . , u+ 1︸ ︷︷ ︸

p

22



The above means that u elements are chosen from each of the b− p− v of the encrypted
columns, and u+ 1 elements are chosen from each of the remaining plaintext and en-
crypted columns. Consider shifting any element from a plaintext column to an encrypted
column j−. We argue that (after the shift) there exists a configuration of b− p encrypted
columns with at most k elements in the encrypted columns. Such a configuration is
obtained as follows: Let j+ be the plaintext column with the least amount of elements
after the shift. We move j− to the set of plaintext columns and j+ to the set of encrypted
columns. The numbers of plaintext and encrypted columns clearly do not change. Since
j− has at least u+ 1 elements and j+ has at most u+ 1 elements, there is no positive
gain in elements in the set of encrypted columns. Thus the new configuration has at most
k elements in the encrypted columns, as the previous configuration does. This shows that
the case constructed above is indeed the worst case. Assume for the moment that each
monomial is computable by at least one server, then the supported degree cannot exceed

d = bu+ p+ v

= b

(
k − v
b− p

)
+ p+ v

= bk

b− p
+ v

(
1− b

b− p

)
+ p

= bk

b− p
− v

(
p

b− p

)
+ p.

Depending on the value of v, which is uniquely determined by (k, b, p) and satisfies
0 ≤ v < b− p, the maximum supported degree lies within the range

k · b

b− p
< d ≤k · b

b− p
+ p.

To maximize the above range, we can fix p = b−1
t , and have

k · tb

(t− 1)b+ 1 < d ≤k · tb

(t− 1)b+ 1 + b− 1
t

. (3)

For consistency check, we can differentiate with respect to t. For the (non-trivial) case
where p ≥ 1, we have 1 ≤ t ≤ b− 1, and hence

k <
kb

b− 1 < d ≤(k + 1)b− 1.

When no collusion is allowed, i.e., t = 1, we can set b = m and recover the previous
bound d ≤ (k+1)m−1. This bounds the maximum supported degree by (k+1)m−1, re-
gardless of how many servers are involved. The constructions in Section 4 and Section 5,
show that this bound is actually achievable using m servers.

If a collusion of two servers is allowed, i.e., t ≥ 2, we examine the bound given
in Equation 3. An interpretation is that the construction amplifies the supported degree
of the base encryption scheme by roughly t/(t− 1) multiplicatively (by taking limit as
the number of columns b→∞), then adds roughly 1/t degree per column.
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Bounding the Minimum Number of Servers. It remains to show the condition for having
each monomial computable by at least one server. Fix b, p, k and d. There must exists an
integer δ such that d ≤ δ · k. We argue that the number of servers m required is lower
bounded by the solution of the following set cover problem.

From the set of all
(
b
p

)
number of configurations of choosing p plaintext columns out

of b columns in a secret share matrix, choose a subset satisfying the following properties:
For any integer s ∈ [b], any combination of s out of all b columns, any combination
of bs/δc out of these s columns, there exists at least one configuration (a secret share
matrix) in the subset which has at most these bs/δc columns (out of the s columns)
encrypted. Each satisfying subset specifies a set of servers.

We argue that the above condition on m is both necessary and sufficient, i.e., the
lower bound is tight. For the former, suppose that the condition is not satisfied, namely
that there exists s, a combination of s columns, and a combination of bs/δc out of these
s columns, such that the secret share matrices of all servers have more than these bs/δc
columns encrypted. Consequently, no server is able to compute the monomial where all
elements are contributed from these s/δ columns.

For the sufficiency, consider without loss of generality any degree d monomial, and
denote the number of columns contributing elements to this monomial by s ∈ [b]. Since
d ≤ δ · k, there must exist bs/δc columns out of these s columns that are contributing at
most k elements. By the condition specified above, there must exist a server whose secret
share matrix has at most these bs/δc columns encrypted (whereas the other s− bs/δc
are in plaintext). This server is thus able to compute the monomial.

Although the general set cover problem is NP-hard, the greedy algorithm is known
to solve the general problem with (multiplicative) approximate factor O(logN) [16] ,
where N is the number of elements to be covered.

Practically-Relevant Parameters. The above analysis does not give a close form for the
number of servers m needed, for a fixed set of parameters (t, b, p, k, d). In the following,
we investigate parameter settings which are most practically relevant. First, we restrict
ourselves to use only encryption for affine functions, i.e., k = 1. Next we consider the
computation of polynomials of degree d = 3, since they are sufficient for the secure
computation of any function via randomized encodings [1]. In order to compute degree-3
polynomials, we must have p > 15. We pick p = 2 and set b = 2t+1, where t > 1. Using
a greedy algorithm, it can be found that the number of servers needed for t = 2, 3, 4 are
m = 4, 9, 16 respectively, which seems to suggest that m ≈ t2. If that is the case, the
maximum tolerated ratio of colluding servers is t/m ≈ 1/t, which gets worse as t grows.
Therefore, a (∗, 4, 2)-HSS for degree-3 polynomials from affine encryption seems to be
the most interesting result in terms of collusion resistance.

7 Applications

We highlight several interesting applications of our HSS scheme.

5 If p = 1, then the best the Splitd function can do is to assign one element to the plaintext
column and one element to one of the ciphertext columns, whose product is of degree 2.
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7.1 Server-aided Secure Evaluation of Low-Degree Polynomials

Server-aided secure computation is a natural application of HSS schemes. In this scenario,
one or multiple input clients secret share their data to a set of servers. Later, the servers
can homomorphically evaluate functions (e.g., given by the input clients or other parties)
on the shared data and send the result to an output client. The latter can efficiently
recover the computation result, and due to the context-hiding property, without learning
the original data and the function being evaluated beyond what is trivially revealed by the
result. Using an HSS scheme in this scenario is particularly appealing since the client-
server communication is succinct (independent of the size of the function evaluated) and
the workload of the input and output clients is typically small.

When instantiated with linearly homomorphic encryption schemes such as ElGa-
mal [19] or Paillier [29], our main construction allows input clients to outsource the com-
putation of degree-d polynomials to m non-communicating servers, where d = 2m− 1
and m = O (log λ). Since Shamir secret sharing [30] allows to evaluate polynomials of
degree d = m− 1 using m = poly(λ) servers, our result is more interesting when the
number of servers, and hence the degree of the polynomials, are small. There are a few
interesting scenarios where low-degree polynomials are evaluated over private data.

1. Moments: Moments are recurrent measures in statistics and physics to describe the
shape of a set of points. The d-th moment is computable by a degree-d polynomials.
The mean is the first row moment and the variance and the skewness are the second
and third central moments, respectively. Notably, our scheme allows two servers to
efficiently compute the third moment from standard assumptions whereas previous
approaches with comparable efficiency [15] rely on bilinear maps.

2. Neural Networks: Multi-layered non-recurrent neural networks are arithmetic cir-
cuits consisting of gates computing non-linear functions. Previous work on privacy-
preserving neural network evaluation [24] approximates these non-linear functions
using low-degree polynomials, such that the modified neural network can be homo-
morphically evaluated using a fully homomorphic encryption [22] (FHE) scheme
with a reasonable parameter. Suppose that the networks to be evaluated are shallow
enough, then our constructions provide a relatively lightweight alternative to FHE
for evaluating neural networks over private data.

3. Polynomials with Hidden Coefficients: Suppose the polynomial f of degree d to be
evaluated is given also by the input clients, they can choose to hide the coefficients
of the monomials in f by secret sharing them, and turning f into a new polynomial
f ′ of degree d+ 1, where the coefficients in f become variables in f ′. The clients
can further hide the monomials appearing in f by secret sharing the (possibly zero)
coefficients in f of all monomials of degree at most d. Note that although the number
of such monomials is exponential in d, it is not an issue for a degree d = O (log λ)
(when k = 1 and m = O(log λ)) which is logarithmic in the security parameter.

4. m-Server PIR: Our HSS scheme for degree d polynomials can be easily converted
into a (round-optimal) m-server PIR scheme as follows: Consider a set of m servers
who store a copy of a database DB locally and let us split the database in 2d equal
chunks (DB1, . . . ,DB2d), then, on input an index i ∈ {0, 1}d, the client shares i to
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the m servers with our HSS scheme. The servers evaluate the function

g(i) :=
2d∑
j=1

DBj(i = j) = DBi

and send the output of the computation to the client. Note that g is a polynomial of
degree d with coefficients determined by DB, which is public. The communication
complexity is dominated by the factor |DB|

2d + poly(λ) of the server-client message.

7.2 Round-Optimal Server-Aided Multiparty Computation in the Plain Model

A recent result by Boyle et al. [11] shows that an additive (3, 2, 1)-HSS schemes for
degree-3 polynomials and a low-depth PRG imply a 2 round (n,m)-MPC protocols6,
where n,m ∈ poly(λ). Since the only (3, 2, 1)-HSS scheme from standard assumption
was known to exist only in the PKI model [9], the resulting MPC protocol inherits the
same setup assumption. Unfortunately the transformation assumes a linear reconstruction
of the HSS, which is not satisfied by our scheme.

However, we can apply a similar transformation to our multi-client HSS scheme in
Section 5 to obtain a 2 round (n,m)-MPC, where the adversary is allowed to corrupt any
strict subset of the servers or the output client, and an arbitrary number of input clients.
This corruption model has been introduced in the context of server-aided multiparty-
computation [28]. We denote such a primitive by (n,m)-saMPC. Our scheme does not
require a PKI and can be instantiated in the plain model. Moreover, since our HSS scheme
is perfectly correct (assuming a perfectly correct homomorphic encryption scheme), we
can avoid the probability amplification step in [10]. We briefly outline the steps of the
transformation in the following.

1. (n, 2, 1)-HSS for degree 3 polynomials =⇒ (n, 2, 1)-HSS for P/poly. This is a
trivial implication using randomized encodings [1] and assuming the existence of a
low-depth PRG.

2. (n, 2, 1)-HSS for P/poly =⇒ (n, 3)-saMPC for P/poly. This is shown using the
server-emulation technique described in [10], where the inputs of one server are
secret shared among two new servers and its computation is emulated using the
(n, 2, 1)-HSS. Note that the resulting (n, 3)-saMPC is resilient against the corruption
of any strict subset of the 3 servers or the output client.

3. (n, 3)-saMPC for P/poly =⇒ (n,m)-saMPC for degree 3 polynomials. This
is shown using the following observation of [11]: Given a degree 3 polynomial
f(X1, . . . , Xn), then rewriting Xj =

∑m
i=1 xj,i we obtain another degree 3 poly-

nomial f(
∑m
i=1 x1,i, . . . ,

∑m
i=1 xn,i). Each monomial is of the form x1,ix2,jx2,k

and can be computed by the servers (Si,Sj ,Sk) with the (n, 3)-saMPC scheme.
Padding each monomial with a blinding factor (such that all factors sum up to 0)
gives us the final (n,m)-saMPC protocol for degree 3 polynomials.

4. (n,m)-saMPC for degree 3 polynomials =⇒ (n,m)-saMPC for P/poly. Follows
by another application of randomized encodings.

6 (n,m)-MPCs are n-client m-server MPCs which are secure against m− 1 corrupt server.
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