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Abstract. In a sanitizable signature scheme the signer allows a designated third party, called the
sanitizer, to modify certain parts of the message and adapt the signature accordingly. Ateniese et al.
(ESORICS 2005) introduced this primitive and proposed five security properties which were formalized
by Brzuska et al. (PKC 2009). Subsequently, Brzuska et al. (PKC 2010) suggested an additional security
notion, called unlinkability which says that one cannot link sanitized message-signature pairs of the
same document. Moreover, the authors gave a generic construction based on group signatures that
have a certain structure. However, the special structure required from the group signature scheme only
allows for ine�cient instantiations.
Here, we present the first e�cient instantiation of unlinkable sanitizable signatures. Our construction is
based on a novel type of signature schemes with re-randomizable keys. Intuitively, this property allows to
re-randomize both the signing and the verification key separately but consistently. This allows us to sign
the message with a re-randomized key and to prove in zero-knowledge that the derived key originates
from either the signer or the sanitizer. We instantiate this generic idea with Schnorr signatures and
e�cient À-protocols, which we convert into non-interactive zero-knowledge proofs via the Fiat-Shamir
transformation. Our construction is at least one order of magnitude faster than instantiating the generic
scheme of Brzuska et al. with the most e�cient group signature schemes.

1 Introduction

Sanitizable signature schemes were introduced by Ateniese et al. [ACdT05] and similar primitives were
concurrently proposed by Steinfeld, Bull, and Zheng [SBZ02], by Miyazaki et al. [MSK02], and by Johnson
et al. [JMSW02]. The basic idea of this primitive is that the signer specifies parts of a (signed) message
such that a dedicated third party, called the sanitizer, can change the message and adapt the signature
accordingly. Sanitizable signatures have numerous applications, such as the anonymization of medical data,
replacing commercials in authenticated media streams, or updates of reliable routing information [ACdT05].
After the first introduction of sanitizable signatures in [ACdT05], the desired security properties were later
formalized by Brzuska et al. [BFF+09]. At PKC 2010, Brzuska et al. [BFLS10] identified an important
missing property called unlinkability. Loosely speaking, this notion ensures that one cannot link sanitized
message-signature pairs of the same document. This property is essential in applications like the sanitization
of medical records because it prevents the attacker from combining information of several sanitized versions
of a document in order to reconstruct (parts of) the original document. The authors also showed that
unlinkable sanitizable signatures can be constructed from group signatures [BMW03] having the property
that the keys of the signers can be computed independently, and in particular before the keys of the group
manager. However, to this date, no e�cient group signature scheme that has the required properties is known,
which also means that no e�cient unlinkable sanitizable signature scheme is known. This leaves us in an
unsatisfactory situation. Either we use e�cient sanitizable signature schemes that only achieve a subset of
the security properties [ACdT05, BFF+09] or we have to rely on an ine�cient black-box construction of
unlinkable sanitizable signatures.

In this work, we close this gap by presenting the first e�cient unlinkable sanitizable signature scheme
that achieves all security properties. The instantiation of our scheme only requires 15 exponentiations for



signing, 17 for the verification, and 14 for sanitizing a message-signature pair. This is at least one order of
magnitude faster than the fastest previously known construction. For a detailed performance comparison,
refer to Section 1.2.

1.1 Overview of our Construction

In this section, we describe the main idea of our construction and the underlying techniques. Our solution
is based on a novel type of digital signature schemes called signatures with perfectly re-randomizable keys.
This type of signature schemes allows to re-randomize both the signing and the verification key separately.
It is required that the re-randomization is perfect, meaning that re-randomized keys must have the same
distribution as the original key. The new unforgeability notion for this type of signature scheme requires that
it is infeasible for an attacker to output a forgery under either the original or a re-randomized key, even if
the randomness is controlled by the attacker.

We show that this notion does not trivially follow from the regular notion of unforgeability. In fact, only
a few signature schemes having this property achieve our notion of unforgeability under re-randomizable
keys. We demonstrate this fact by showing concrete attacks against some well known unforgeable signature
schemes that have re-randomizable keys. In particular, we show that the signature scheme of Boneh and
Boyen [BB04] and the one of Camenisch and Lysyanskaya [CL04] have re-randomizable keys, but are insecure
with respect to our stronger security notion. We stress that these attacks have no implications on the original
security proof, but that they cannot be used as an instantiation. On the positive side, we prove that Schnorr’s
signature scheme [Sch90,Sch91] has re-randomizable keys and fulfills our security notion. It is well known that
Schnorr’s signature scheme [Sch90,Sch91] is one of the most e�cient signature schemes based on the discrete
logarithm assumption. Moreover, we also propose an instantiation of signature schemes with re-randomizable
keys in the standard model by slightly modifying the signature scheme of Hofheinz and Kiltz [HK08,HK12].

Apart from their usefulness in constructing highly e�cient sanitizable signatures, this primitive may also
be of independent interest. A second possible application of signature schemes with re-randomizable keys
are stealth addresses [Fra15] in Bitcoin or other cryptocurrencies. On a very high level, Bitcoin replaces
bank accounts with keys of a signature scheme. Money transactions in Bitcoin transfer money from one
public key to another and are only valid if they are signed with the secret key of the payer. All transactions
are logged in a public log data structure, the block chain, which can be used to verify the validity of new
transactions as well as to track money flow in Bitcoin. Our signatures with re-randomizable keys provide a
conceptually very simple solution for so called stealth addresses. Consider a Bitcoin donation address on a
website to support the host of the website or donate money to the website for a good cause. A donor may
be unwilling to donate money if he can be linked to the website or other donors by the block chain. Using
signatures with re-randomizable keys a donor can take the donation address, re-randomize it, and pay the
money to the re-randomized address and transmit the re-randomization factor to the recipient through a
non-public channel, such as email. The recipient can use the given re-randomization factor to re-randomize
his corresponding secret key to further transfer the received money. Such addresses that are related in some
invisible way to the recipient are called stealth addresses. For a more detailed treatment of Bitcoin and the
existing stealth address mechanism see [Fra15].

Construction of Unlinkable Sanitizable Signature Schemes. Our construction is based on signature schemes
that have perfectly re-randomizable keys. To sign a message m, the signer first splits the message into the
parts that cannot be modified by the sanitizer and those that may be changed. Subsequently, the signer
authenticates the entire messages using a signature scheme with re-randomized keys. However, the signer
cannot sign this part directly as this would reveal the identity of the signer. Instead, the signer chooses a
randomness fl, re-randomizes their key-pair, and then proves, in zero-knowledge, that the derived public key
is a re-randomization of either the signer’s or the sanitizer’s key.

Sanitizing a message follows the same idea: the sanitizer modifies the message and signs it with a re-
randomized version of their key pair and appends a zero-knowledge proof for the same language.

To turn this idea into an e�cient scheme, we propose an e�cient sigma protocol tailored to our prob-
lem that we then convert via the Fiat-Shamir transformation [FS87] into an e�cient non-interactive zero-
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knowledge proof. The main observation is that our zero-knowledge proofs prove only simple statements about
the keys and not about encrypted signatures that verify under either the signer or the sanitizers public-key.
Since the corresponding language is much simpler than this standard “encrypt-and-proof” approach, it has
much shorter statements and thus the resulting zero-knowledge proofs are significantly more e�cient.

1.2 Evaluation and Comparison

To demonstrate the e�ciency of our approach, we compare both the computational and the storage com-
plexity of our construction to the one of Brzuska et al. [BFLS10], where we use the currently most e�cient
instantiations of the underlying (group) signature scheme. Somewhat surprisingly, only a few group signature
schemes have the property that the user keys can be generated independently of and, in particular, before
the group manager’s key — a property that is required by [BFLS10]. This property originates from the
definitions of Bellare, Micciancio, and Warinschi [BMW03] and only very few group signature schemes, such
as [Gro07,FY05], can be adapted to have this property and at the same time fulfill all security requirements
needed in [BFLS10]. In most cases the group member’s keys depend on some information published by the
group manager. Finally, we instantiate the signature scheme in [BFLS10] using a deterministic version of
Schnorr’s signature scheme. Thus, in our comparison shown in Table 1, we instantiate [BFLS10] with the

KGensig KGensan Sign Sanit Verify Proof Judge
This paper 7E 1E 15E 14E 17E 23E 6E
[BFLS10] using [Gro07] 1E 1E 194E+2P 186E+1P 207E+62P 14E+1P 1E+2P
[BFLS10] using [FY05] 1E 4E 2831E 2814E 2011E 18E 2E

Table 1. Comparison of the dominant operations in our construction instantiated as described in Section 5 with
the construction of Brzuska et al. [BFLS10] instantiated with Schnorr signatures and the group signature schemes
of Groth [Gro07] and Furukawa and Yonezawa [FY05] respectively. E and P stand for group exponentiations and
pairing evaluations respectively.

group signature schemes of Groth [Gro07] and of Furukawa and Yonezawa [FY05], which are to the best of
our knowledge the two most e�cient group signature schemes that can be adapted to allow an instantiation
of [BFLS10]. Our comparison shows that in the most important algorithms, i.e., signing, sanitizing, and

pksig sksig pksan sksan ‡ fi
This paper 7 14 1 1 14 4
[BFLS10] using [Gro07] 1 1 1 1 69 1
[BFLS10] using [FY05] 1 1 5 1 1620 3

Table 2. Comparison of the key, signature, and proof sizes in our construction instantiated as described in Section 5
with the construction of Brzuska et al. [BFLS10] instantiated with Schnorr signatures and the group signature schemes
of Groth [Gro07] and Furukawa and Yonezawa [FY05] respectively. Here pksig, sksig, pksan, and sksan refer to the
signer’s and sanitizer’s public and secret keys, while ‡ refers to the signature, and fi refers to the proof that is used to
determine accountability. The sizes are measured in group elements. For the sake of simplicity we do not distinguish
between elements of di�erent groups such as Zq and G. This simplification slightly favors [BFLS10] using [Gro07],
since group signatures in this scheme consist exclusively of G-elements.

verification, our construction is at least one order of magnitude faster than both instantiations of [BFLS10].
Similarly, Table 2 provides an overview of the storage complexity of the di�erent constructions. Although our
keys are slightly larger than the other instances, it also shows that our signatures are significantly smaller
than the ones of the other instances. Note that both the number of exponentiations and the number of group
elements for Furukawa and Yonezawa’s group signature scheme depend linearly on the security parameter.
In our comparison, the scheme is instantiated with 100 bit security.
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Thus, it is easy to see that our solutions is the first scheme that is e�cient enough to be used in practice
today.

1.3 Related Work

Ateniese et al. [ACdT05] first introduced sanitizable signatures and gave an informal description of the
following properties: Unforgeability ensures that only the honest signer and sanitizer can create valid sig-
natures. Immutability says that the (malicious) sanitizer can only modify designated parts of the message.
Transparency guarantees that signatures computed by the signer and the sanitizer are indistinguishable.
Accountability demands that, with the help of the signer, a proof of authorship can be generated, such that
neither the malicious signer nor the malicious sanitizer can deny authorship of the message. These properties
were later formalized by Brzuska et al. [BFF+09] and the Unlinkability property was introduced by Brzuska
et al. in [BFLS10]. Later, in [BPS12], Brzuska et al. introduce the notion of non-interactive public account-
ability, which allows a third party, without help from the signer, to determine, whether a message originates
from the signer or the sanitizer. In [BPS13], the same authors provide a slightly stronger unlinkability no-
tion and an instantiation that has non-interactive public accountability and achieves their new unlinkability
notion. However, non-interactive accountability and transparency are mutually exclusive. That is, no scheme
can fulfill both properties at the same time. In this work we focus on schemes that have (interactive) account-
ability and transparency. Another line of research initiated by Klonowski and Lauks [KL06] and continued by
Canard and Jambert [CJ10] considers di�erent methods for limiting the allowed operations of the sanitizer.
That is, they show how to limit the set of possible modifications on one single block and how to enforce the
same modifications on di�erent message blocks. In [CJL12], Canard et al. extend sanitizable signatures to
the setting with multiple signers and sanitizers. Recently, Derler and Slamanig suggested a security notion
that is stronger than privacy but weaker than unlinkability [DS15].

Other closely related types of malleable signature schemes, such as homomorphic signatures [JMSW02,
BF11,JWL12,ALP13,Fre12,Cat14] or redactable signatures [SBZ02,JMSW02,PS14,BBD+10,CLX09], where
parts of the signed message can be removed, are closely related to sanitizable signatures, but aim to solve
related but di�erent problems, have di�erent security notions, and are not directly applicable to solve the
problem of e�cient unlinkable sanitizable signatures. In [BPW03] Boldyreva et al. deal with proxy signature
schemes for delegating signing rights. In such signature schemes a designator can delegate signing rights
to a proxy signer, who can then sign messages on behalf of the designator. However, in such a scheme the
proxy signatures are publicly distinguishable from signatures created by the designator. This would break
the transparency property of sanitizable signature schemes. Policy-based signatures [BF14] allows a signer
to delegate signing rights in connection with a policy that specifies, which messages can be signed with
the delegated signing key. In addition, they require that they delegation policy shall remain hidden. In a
similar vein to [BF14] in [BGI14] the authors explore the possibilities of delegating signing keys for arbitrary
functions. That is, using the delegated signing key one can sign functions of the message that correspond to
the key. These works show theoretical solutions to the discussed problems, but are too slow for practical use
due to the cryptographic tools they use.

2 Sanitizable Signatures

Sanitizable signature schemes allow the delegation of signing capabilities to a designated third party, called
the sanitizer. These delegation capabilities are realized by letting the signer “attach” a description of the
admissible modifications Adm for this particular message and sanitizer. The sanitizer may then change
the message according to some modification Mod and update the signature using their private key. More
formally, the signer holds a key pair (sksig, pksig) and signs a message m and the description of the admissible
modifications Adm for some sanitizer pksan with its private key sksig. The sanitizer, having a matching private
key sksan, can update the message according to some modification Mod and compute a signature using his
secret key sksan. In case of a dispute about the origin of a message-signature pair, the signer can compute a
proof fi (using an algorithm Proof) from previously signed messages that proves that a signature has been
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created by the sanitizer. The verification of this proof is done by an algorithm Judge (that only decides the
origin of a valid message-signature pair in question; for invalid pairs such decisions are in general impossible).

Admissible Modifications. Following [BFF+09,BFLS10] closely, we assume that Adm and Mod are (descrip-
tions of) e�cient deterministic algorithms such that Mod maps any message m to the modified message
mÕ = Mod(m), and Adm(Mod) œ {0, 1} indicates if the modification is admissible and matches Adm,
in which case Adm(Mod) = 1. By FixAdm we denote an e�cient deterministic algorithm that is uniquely
determined by Adm and which maps m to the immutable message part FixAdm(m), e.g., for block-divided
messages FixAdm(m) is the concatenation of all blocks not appearing in Adm. We require that admissi-
ble modifications leave the fixed part of a message unchanged, i.e., FixAdm(m) = FixAdm(Mod(m)) for all
m œ {0, 1}ú and all Mod with Adm(Mod) = 1. Analogously, to avoid choices like FixAdm having empty
output, we also require that the fixed part must be “maximal” given Adm, i.e., FixAdm(mÕ) ”= FixAdm(m)
for mÕ /œ {Mod(m) | Mod with Adm(Mod) = 1}.

2.1 Definition of Sanitizable Signatures
The following definition of sanitizable signature schemes is taken in verbatim from [BFF+09,BFLS10].
Definition 1 (Sanitizable Signature Scheme). A sanitizable signature scheme SanS = (KGensig,
KGensan, Sign, Sanit, Verify, Proof, Judge) consists of seven algorithms:

Key Generation. There are two key generation algorithms, one for the signer and one for the sanitizer.

Both create a pair of keys, a private and the corresponding public key:

(sksig, pksig) Ω KGensig(1Ÿ) and (sksan, pksan) Ω KGensan(1Ÿ).

Signing. The signing algorithm takes as input a message m œ {0, 1}ú
, a signer secret key sksig, a sanitizer

public key pksan, as well as a description Adm of the admissible modifications to m by the sanitizer and

outputs a signature ‡. We assume that Adm can be recovered from any signature:

‡ Ω Sign(m, sksig, pksan, Adm).

Sanitizing. The sanitizing algorithm takes as input a message m œ {0, 1}ú
, a description Mod of the desired

modifications to m, a signature ‡, the signer’s public key pksig, and a sanitizer secret key sksan. It modifies

the message m according to the modification instruction Mod and outputs a new signature ‡Õ
for the modified

message mÕ = Mod(m) or possibly ‹ in case of an error:

{(mÕ, ‡Õ), ‹} Ω Sanit(m, Mod, ‡, pksig, sksan).

Verification. The verification algorithm takes as input a message m, a candidate signature ‡, a signer

public key pksig, as well as a sanitizer public key pksan and outputs a bit b:

b Ω Verify(m, ‡, pksig, pksan).

Proof. The proof algorithm takes as input a signer secret key sksig, a message m, a signature ‡, and a

sanitizer public key pksan and outputs a proof fi:

fi Ω Proof(sksig, m, ‡, pksan).

Judge. The judge algorithm takes as input a message m, a signature ‡, signer and sanitizer public keys

pksig, pksan, and proof fi. It outputs a decision d œ {Sign, San} indicating whether the message-signature

pair was created by the signer or the sanitizer:

d Ω Judge(m, ‡, pksig, pksan, fi).

For a sanitizable signature scheme the usual correctness properties should hold, saying that genuinely signed
or sanitized messages are accepted and that a genuinely created proof by the signer leads the judge to decide
in favor of the signer. For a formal approach to correctness see [BFF+09].
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2.2 Security of Sanitizable Signatures

In this section we recall the security notions of sanitizable signatures given by Brzuska et al. [BFF+09,
BFLS10] and we follow their description closely. The authors defined unforgeability, privacy, immutability,
accountability, transparency, and unlinkability and showed that signer and sanitizer accountability together
implies unforgeability and that unlinkability implies privacy. Therefore, we only focus on the necessary
definitions and omit unforgeability and privacy.

Immutability. Informally, this property says that a malicious sanitizer cannot change inadmissible blocks.
This is formalized in a model where the malicious sanitizer A interacts with the signer to obtain signatures ‡i

for messages mi, descriptions Admi and keys pksan,i of its choice. Eventually, the attacker stops, outputting
a valid pair (pk

ú

san, mú, ‡ú) such that message mú is not a “legitimate” transformation of one of the mi’s
under the same key pk

ú

san = pksan,i. The latter is formalized by requiring that for each query pk
ú

san ”= pksan,i
or mú /œ {Mod(mi) | Mod with Admi(Mod) = 1} for the value Admi in ‡i. This requirement enforces that
for block-divided messages mú and mi di�er in at least one inadmissible block. Observe that this definition
covers also the case where the adversary interact with several sanitizers simultaneously, because it can query
the signer for several sanitizer keys pksan,i.

Definition 2 (Immutability). A sanitizable signature scheme SanS is said to be immutable if for all PPT

adversaries A the probability that the experiment Immut
SanS
A

(Ÿ) evaluates to 1 is negligible (in Ÿ), where

Experiment Immut
SanS
A

(Ÿ)
(sksig, pksig) Ω KGensig(1Ÿ)
(pk

ú

san, mú, ‡ú) Ω ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)
letting (mi, Admi, pksan,i) and ‡i denote the

queries and answers to and from oracle Sign.

Output 1 if Verify(mú, ‡ú, pksig, pk
ú

san) = 1 and for all i the following holds:

pk
ú

san ”= pksan,i or mú /œ {Mod(mi) | Mod with Admi(Mod) = 1}
Else output 0.

Accountability. This property demands that the origin of a (possibly sanitized) signature should be undeni-
able. We distinguish between sanitizer-accountability and signer-accountability and formalize each security
property in the following. Signer-accountability says that, if a message and its signature have not been
sanitized, then even a malicious signer should not be able to make the judge accuse the sanitizer.

In the sanitizer-accountability game let ASanit be an e�cient adversary playing the role of the malicious
sanitizer. Adversary ASanit has access to a Sign and Proof oracle and it succeeds if it outputs a valid message
signature pair such that mú, ‡ú, together with a key pk

ú

san (with (pk
ú

san, mú) such that the output is di�erent
from pairs (pksan,i, mi) previously queried to the Sign oracle). Moreover, it is required that the proof produced
by the signer via Proof still leads the judge to decide “Sign”, i.e., that the signature has been created by
the signer.

Definition 3 (Sanitizer-Accountability). A

sanitizable signature scheme SanS is sanitizer-accountable if for all PPT adversaries A the probability that

the experiment San-Acc
SanS
A

(Ÿ) evaluates to 1 is negligible (in Ÿ), where

Experiment San-Acc
SanS
A

(Ÿ)
(sksig, pksig) Ω KGensig(1Ÿ)

(pk
ú

san, mú, ‡ú) Ω A
Sign(·,sksig,·,·),
Proof(sksig,·,·,·)(pksig)

letting (mi, Admi, pksan,i) and ‡i

denote the queries and answers to

and from oracle Sign

fi Ω Proof(sksig, mú, ‡ú, pk
ú

san)
Output 1 if for all i the following holds:
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(pk
ú

san, mú) ”= (pksan,i, mi) and
Verify(mú, ‡ú, pksig, pk

ú

san) = 1 and
Judge(mú, ‡ú, pksig, pk

ú

san, fi) ”= San

In the signer-accountability game a malicious signer ASign gets a public sanitizing key pksan as input and
has access to a sanitizing oracle, which takes as input tuples (mi, Modi, ‡i, pksig,i

) and returns (mÕ

i, ‡Õ

i).
Eventually, the adversary ASign outputs a tuple (pk

ú

sig, mú, ‡ú, fiú) and is considered succesful if Judge accuses
the sanitizer for the new key-message pair pk

ú

sig, mú with a valid signature ‡ú.

Definition 4 (Signer-Accountability). A sanitizable signature scheme SanS is signer-accountable if for

all PPT adversaries A the probability that the experiment Sig-Acc
SanS
A

(Ÿ) evaluates to 1 is negligible (in Ÿ),

where

Experiment Sig-Acc
SanS
A

(Ÿ)
(sksan, pksan) Ω KGensan(1n)
(pk

ú

sig, mú, ‡ú, fiú) Ω ASanit(·,·,·,·,sksan)(pksan)
letting (mi, Modi, ‡i, pksig,i) and

(mÕ

i, ‡Õ

i) denote the queries and

answers to and from oracle Sanit.

Output 1 if for all i the following holds:

(pk
ú

sig, mú) ”= (pksig,i, mÕ

i) and
Verify(mú, ‡ú, pk

ú

sig, pksan) = 1 and
Judge(mú, ‡ú, pk

ú

sig, pksan, fiú) ”= Sign
else output 0.

Transparency. Informally, this property says that one cannot decide whether a signature has been sanitized
or not. Formally, this is defined in a game where an adversary A has access to Sign, Sanit, and Proof oracles
with which the adversary can create signatures for (sanitized) messages and learn proofs. In addition, A gets
access to a Sanit/Sign box which contains a secret random bit b œ {0, 1} and which, on input a message m,
a modification information Mod and a description Adm behaves as follows:

– for b = 0 runs the signer algorithm to create ‡ Ω Sign(m, sksig, pksig, Adm), then runs the sanitizer
algorithm and returns the sanitized message mÕ with the new signature ‡Õ, and

– for b = 1 acts as in the case b = 0 but also signs mÕ from scratch with the signing algorithm to create a
signature ‡Õ and returns the pair (mÕ, ‡Õ).

Adversary A eventually produces an output a, the guess for b. A sanitizable signature is now transparent if
for all e�cient algorithms A the probability for a right guess a = b in the above game is negligibly close to
1
2 . Below we also define a relaxed version called proof-restricted transparency.

Definition 5 ((Proof-Restricted) Transparency). A sanitizable signature scheme SanS is said to be

proof-restrictedly transparent if for all PPT adversaries A the probability that the experiment Trans
SanS
A

(Ÿ)
evaluates to 1 is negligibly bigger than 1/2 (in Ÿ), where

Experiment Trans
SanS
A

(Ÿ)
(sksig, pksig) Ω KGensig(1Ÿ)
(sksan, pksan) Ω KGensan(1Ÿ)
b Ω {0, 1}

a Ω A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),
Proof(sksig,·,·,·),Sanit/Sign(·,·,·) (pksig, pksan)

letting MSanit/Sign and MProof denote

the sets of messages output by the Sanit/Sign

and queried to the Proof oracle respectively.

Output 1 if
!
a = b and MSanit/Sign fl MProof = ÿ

"

Else output 0
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Unlinkability. This security notion demands that it is not feasible to use the signatures to identify san-
itized message-signature pairs originating from the same source. This should even hold if the adversary
itself provides the two source message-signature pairs and modifications of which one is sanitized. It is re-
quired that the two modifications yield the same sanitized message, because otherwise predicting the source
is easy, of course. This, however, is beyond the scope of signature schemes: the scheme should only pre-
vent that signatures can be used to link data. In the formalization of [BFLS10], the adversary is given
access to a signing oracle and a sanitizer oracle (and a proof oracle since this step depends on the signer’s
secret key and may leak valuable information). The adversary is also allowed to query a left-or-right or-
acle LoRSanit which is initialized with a secret random bit b and keys pksig, sksan. The adversary may
query this oracle on tuples ((m0, Mod0, ‡0), (m1, Mod1, ‡1)) and returns Sanit(mb, Modb, ‡b, pksig, sksan) if
Verify(mi, ‡i, pksig, pksan) = 1 for i = 0, 1, Adm0 = Adm1 and if the modifications map to the same message,
i.e., Adm0(Mod0) = 1, Adm1(Mod1) = 1 and Mod0(m0) = Mod1(m1). Otherwise, the oracle returns ‹.
The adversary should eventually predict the bit b significantly better than with the guessing probability of
1
2 .

Definition 6 (Unlinkability). A sanitizable signature scheme SanS is unlinkable if for all PPT adver-

saries A the probability that the experiment Link
SanS
A

(Ÿ) evaluates to 1 is negligibly bigger than 1/2 (in Ÿ),

where

Experiment Link
SanS
A

(Ÿ)
(sksig, pksig) Ω KGensig(1Ÿ)
(sksan, pksan) Ω KGensan(1Ÿ)
b Ω {0, 1}

a Ω A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof(sksig,·,·,·),LoRSanit(·,·) (pksig, pksan)
if a = b then output 1, else output 0.

3 Signatures Schemes With Re-Randomizable Keys

In this section, we introduce signature schemes that have re-randomizable keys and which serve as the main
building block for our construction. Signature schemes with this property have the advantage that one can
re-randomize the key-pair (sk, pk) to a key-pair (skÕ, pk

Õ) and sign a message m with a seemingly unrelated
key. Jumping ahead, this property allows us to sign messages with a fresh key and prove, in zero-knowledge,
the origin of the key. For one of the signature schemes we require bilinear maps, which are defined as follows.
Let e : G1 ◊ G2 æ Gt be an e�cient, non-degenerate bilinear map, for system-wide available groups, where
g1 and g2 are generators of G1 and G2, respectively.

3.1 Defining Signature Schemes With Re-randomizable Keys

To define this property and the corresponding security notion formally, we denote by À = (SSetup, SGen,
SSign, SVerify) a standard digital signature scheme, where pp Ω SSetup(1Ÿ), (sk, pk) Ω SGen(1Ÿ), ‡ Ω
SSign(sk, m), b Ω SVerify(pk, m, ‡) are the standard algorithms of a digital signature scheme.

Definition 7 (Signatures with Perfectly Re-Randomizable Keys). A signature scheme À = (SSetup,
SGen, SSign, SVerify) has perfectly re-randomizable keys if there exist two PPT algorithms (RandSK, RandPK)
and a randomness space ‰ such that:

RandSK(sk, fl): The secret key re-randomization algorithm takes as input a secret key sk and a randomness

fl œ ‰ and outputs a new secret key sk
Õ
.

RandPK(pk, fl): The public key re-randomization algorithm takes as input a public key pk and a randomness

fl œ ‰ and outputs a new public key pk
Õ
.

Correctness The scheme is correct if and only if all of the following holds:
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1. For all Ÿ œ N, all key-pairs (sk, pk) Ω SGen(1Ÿ), all messages m œ {0, 1}ú
, and all signatures ‡ Ω

SSign(sk, m), it holds that SVerify(pk, m, ‡) = 1.

2. For all Ÿ œ N, all key-pairs (sk, pk) Ω SGen(1Ÿ), all randomness fl œ ‰, all messages m œ {0, 1}ú
, and

‡ Ω SSign(RandSK(sk, fl), m), it holds that SVerify(RandPK(pk, fl), m, ‡) = 1.

3. For all key pairs (sk, pk), and a uniformly chosen randomness fl œ ‰, the distribution of (skÕ, pk
Õ) and

(skÕÕ, pk
ÕÕ) is identical, where pk

Õ Ω RandPK(pk, fl), sk
Õ Ω RandSK(sk, fl), and (skÕÕ, pk

ÕÕ) Ω SGen(1Ÿ)

3.2 Security of Signature Schemes With Re-randomizable Keys

The security of signature scheme with re-randomizable keys is defined analogously to the unforgeability of
regular signature schemes, but allows the adversary to learn message/signature pairs under re-randomized
keys. This should even hold if the randomness to re-randomize the keys is chosen by the attacker. In this
definition, the adversary has access to two oracles. The first one, denoted by O1 is a regular signing oracle.
The second one, denoted by O2 is an oracle that takes as input a message m and some randomness fl. It
then re-randomizes the private key according to fl and signs the message using this key.

Definition 8 (Unforgeability under Re-randomized Keys). A signature scheme with perfectly re-

randomizable keys À = (SGen, SSign, SVerify, RandSK, RandPK) is unforgeable under re-randomized keys
(UFRK) if for all PPT adversaries A the probability that the experiment UFRK

À
A

(Ÿ) evaluates to 1 is negligible

(in Ÿ), where

Experiment UFRK
À
A

(Ÿ) :
(sk, pk) Ω SGen(1Ÿ)
Q := ÿ
(mú, ‡ú, flú) Ω AO1(sk,·),O2(sk,·,·)(pk)
Output 1 if one of the two conditions is fulfilled

1. If SVerify(pk, mú, ‡ú) = 1
and mú ”œ Q

2. If SVerify(RandPK(pk, flú), mú, ‡ú) = 1
and mú ”œ Q

else output 0

O1(sk, m) :
Q := Q fi {m}
‡ Ω SSign(sk, m)
output ‡

O2(sk, m, fl) :
Q := Q fi {m}
sk

Õ Ω RandSK(sk, fl)
‡ Ω SSign(skÕ, m)
output ‡

Given this definition of unforgeability, one can easily obtain the “standard” notion of existential unforgeability
by giving the adversary only access to O1 and only checking the first condition.

Definition 9 (Existential Unforgeability). A signature scheme with perfectly re-randomizable keys À =
(SGen, SSign, SVerify, RandSK, RandPK) is said to be existentially unforgeable under chosen message attacks
(EUF) if for all PPT adversaries A the probability that the experiment EUF

À
A

(Ÿ) evaluates to 1 is negligible

(in Ÿ), where EUF
À
A

(Ÿ) is defined as UFRK
À
A

(Ÿ), but the adversary only gets access to O1 and wins if the

first condition is fulfilled.

For our construction, we also need signature schemes that are strongly unforgeable, meaning that it is
computationally hard to compute a new signature ‡ú on a message m, i.e., the adversary is allowed to
submit m to the oracle and learn a signature ‡ and wins the game if ‡ú is valid but di�erent from ‡.

Definition 10 (Strong Existential Unforgeability). A signature scheme with perfectly re-randomizable

keys À = (SGen, SSign, SVerify, RandSK, RandPK) is strongly existentially unforgeable under chosen mes-
sage attacks (s-EUF) if for all PPT adversaries A the probability that the experiment s-EUF

À
A

(Ÿ) evaluates

to 1 is negligible (in Ÿ), where s-EUF
À
A

(Ÿ) is defined as UFRK
À
A

(Ÿ), but the adversary only gets access to

O1 and O1 maintains Q := Q fi {m, ‡}. The adversary wins only if the following condition is fulfilled:

SVerify(pk, mú, ‡ú) = 1 and (mú, ‡ú) ”œ Q.
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3.3 Counter Examples

In this section, we show that unforgeability under re-randomizable keys (Definition 8) does not trivially
follow from regular unforgeability (Definition 9). In fact, very few standard model signatures, that have
re-randomizable keys, are unforgeable under re-randomizable keys. We demonstrate this by giving concrete
attacks against some well known schemes, such as the Boneh and Boyen [BB08] and Camenisch and Lysyan-
skaya [CL04] signature schemes. We remark that these attacks have no implications on the original security
proof and that our attacks are outside of the regular unforgeability model.

Boneh-Boyen Signature Scheme The scheme of Boneh and Boyen [BB08] works in a bilinear groups
setting and is existentially unforgeable under the q-SDH assumption. The scheme works as follows: The secret
key consists of x, y œ Zú

q and the public key consists of the corresponding G2 elements u := gx
2 and v := gy

2 .
To sign a message m œ Zú

q , the signer chooses a random r Ω Zú
q , computes s := g1/(x+m+yr)

1 , and outputs
the signature ‡ = (r, s). To verify that a signature is valid, the verifier checks that e(s, u · gm

2 · vr) = e(g1, g2)
holds. The keys of the scheme can be re-randomized additively, i.e., given randomness (fl1, fl2) œ Z2

q, secret
keys are randomized as (xÕ, yÕ) := (x+fl1, y+fl2) and public keys are randomized as (uÕ, vÕ) := (u ·gfl1

2 , v ·gfl2
2 ).

Even though this scheme is existentially unforgeable under the q-SDH assumption and has perfectly re-
randomizable keys, it is forgeable under re-randomized keys. The attack is as follows: The adversary A on
input the public key (u, v) chooses a random message m œ Zú

q as well as a random value fl1 œ Zú
q . It then

queries (m, (fl1, 0)) to its signing oracle receiving back a signature ‡ = (r, s). Then, it computes mÕ := m+fl1
and outputs ‡, mÕ, (0, 0) as a forgery. It is easy to verify, that the verification equation actually holds for the
output of A:

e(s, u · gmÕ

2 · vr) = e(g1, g2)
… e(s, gx+m+fl1+yr

2 ) = e(g1, g2)

… e(g
1

(x+fl1)+m+yr

1 , gx+fl1+m+yr
2 ) = e(g1, g2)

… e(g1, g2)
x+fl1+m+yr
x+fl1+m+yr = e(g1, g2)

… e(g1, g2) = e(g1, g2)

Furthermore, the adversary is e�cient and the only message queried to the signing oracle is m, and mÕ ”= m.
Therefore, it follows that A breaks the unforgeability under re-randomizable keys with probability 1.

Camenisch-Lysyanskaya Signature Scheme The signature scheme of Camenisch and Lysyanskaya
[CL04] works in a symmetric bilinear groups setting and is existentially unforgeable under the LRSW as-
sumption. The scheme works as follows: The secret key consists of x, y œ Zq and the public key consists of
the corresponding group elements X := gx and Y := gy. To sign a message m œ Zq, the signer chooses a
random a Ω G, computes b := ay and c := ax+mxy, and outputs the signature ‡ = (a, b, c). To verify that
a signature is valid, the verifier checks that e(a, Y ) = e(g, b) and e(X, a) · e(X, b)m = e(g, c) hold. The keys
of the scheme can be re-randomized multiplicatively1. I.e., given randomness (fl1, fl2) œ Z2

q, secret keys are
randomized as (xÕ, yÕ) := (x · fl1, y · fl2) and public keys are randomized as (X Õ, Y Õ) := (Xfl1 , Y fl2).

This scheme is also existentially unforgeable and has perfectly re-randomizable keys. Nevertheless it also
is forgeable under re-randomized keys and the corresponding attack works as follows: The adversary A on
input the public key (X, Y ) chooses a random message m œ Zú

q as well as a random value fl2 œ Zú
q \ {1}. It

then queries (m, (1, fl2)) to its signing oracle receiving back a signature ‡ = (a, b, c). It it finally computes
mÕ := m · fl2 and bÕ := b(fl≠1

2 ) and outputs (a, bÕ, c), mÕ, (1, 1) as a forgery. It is easy to verify, that the

1 The keys can also be re-randomized additively, however in that case neither a proof of security nor an attack are
apparent.
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verification equation actually holds for the output of A. For the first check equation we have:

e(a, Y ) = e(g, bÕ)

… e(a, gy) = e(g, b(fl≠1
2 ))

… e(gy, a) = e(g, a(yfl2)·fl≠1
2 )

… e(gy, a) = e(g, ay)
… e(g, a)y = e(g, a)y.

For the second verification equation we have:

e(X, a) · e(X, bÕ)mÕ
= e(g, c)

… e(gx, a) · e(gx, bfl≠1
2 )m·fl2 = e(g, ax+mxyfl2)

… e(g, a)x · e(gx, ayfl2fl≠1
2 )mfl2 = e(g, a)x+mxyfl2

… e(g, a)x · e(g, a)mxyfl2 = e(g, a)x+mxyfl2

… e(g, a)x+mxyfl2 = e(g, a)x+mxyfl2 .

Furthermore, the adversary is e�cient and the only message queried to the signing oracle is m, and mÕ ”= m,
since fl2 ”= 1. Therefore, it follows that A wins the unforgeability game with re-randomizable keys with
probability 1.

3.4 Instantiations

In this section, we show that our security notion is achievable in the random oracle and the standard model.
In the random oracle model, we prove that Schnorr’s signature scheme [Sch90, Sch91] is unforgeable under
re-randomized keys and in the standard model we show that a slightly modified version of the signature
scheme due to Hofheinz and Kiltz [HK08,HK12] satisfies our notion.

Random Oracle Model We show that Schnorr’s signature scheme [Sch90, Sch91] is unforgeable under
re-randomized keys. Our proof technique relies on an idea that was previously observed by Fischlin and
Fleischhacker [FF13] in the context of an impossibility result. The core of this technique, that we call
randomness switching technique, allows moving a signature from one public key to another one knowing
only the di�erence between the two corresponding secret keys.

Definition 11 (Schnorr Signature Scheme). Let G be a cyclic group of prime order q with generator g
and let H : {0, 1}ú æ Zq be a hash function. The Schnorr signature scheme SSS, working over G, is defined

as follows:

SGen(1Ÿ): Pick sk Ω Zq at random, compute pk := gsk
, and output (sk, pk).

SSign(sk, m): Pick r Ω Zq at random and compute R := gr
, compute c := H(R, m) and y := r + sk · c

mod q. Output ‡ := (c, y).

SVerify(pk, m, ‡): Parse ‡ as (c, y). If c = H(pk
≠cgy, m), then output 1, otherwise output 0.

RandSK(sk, fl): Compute sk
Õ := sk + fl mod q and output sk

Õ
.

RandPK(pk, fl): Compute pk
Õ := pk · gfl

and output pk
Õ
.

Obviously all three correctness conditions hold. It remains to show that SSS is unforgeable under re-
randomized keys.

Theorem 1 (Unforgeability of Schnorr Signatures Under Re-Randomized Keys). The signature

scheme SSS (Definition 11) is unforgeable under re-randomized keys (Definition 8) in the random oracle

model if the discrete logarithm problem in G is hard.
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Proof. Assume towards contradiction that there exists an e�cient adversary A against the unforgeability
under re-randomized keys. Then, we construct an adversary B against the existential unforgeability of SSS,
which runs A as a black-box and simulates both oracles with its own signing oracle. More precisely, B
answers all queries to O1(sk, m) with its own signing oracle and it simulates O2(sk, fl, m) by first querying
its own signing oracle on m, obtaining a signature (c, y), and then adapting the signatures by adding the
value fl · c to y. Eventually, the adversary A outputs a forgery (‡ú, mú, flú) with ‡ú = (c, y). The reduction
B adapts the signature in order to serve as a forgery under the key pk by subtracting flú · c from y. A
formal description of the adversary and the simulation of the oracle O2(sk, fl, m) is given in the following:

BO1(sk,·)(pk) :

(‡ú, mú, flú) Ω AO1(sk,·),O2(sk,·,·)(pk)
Parse ‡ú as (c, y)
yÕ := y ≠ flúc

output (c, yÕ), mú

O2(sk, fl, m) :
(c, y) Ω O1(sk, m)
yÕ := y + flc

output (c, yÕ)

For the analysis, let us assume that A’s success probability in the experiment UFRK
SSS

A
is greater than

1/poly(Ÿ). It is easy to see that B is e�cient and that the simulation of A’s signing oracle O1 is perfect.
Now, we show that B also provides a perfect simulation of the oracle O2. The signature under pk received
by O2 consists of c and y. The c value is independent of the signing key, therefore only the y value needs to
be adapted. The adapted value is computed as

yÕ = y + flc = r + sk · c + flc = r + (sk + fl) · c.

Obviously (c, yÕ) is therefore a signature on m under pk · gfl with the same randomness as (c, y). It follows
that the answers to signing queries are distributed exactly as in the UFRK

SSS

A
(Ÿ) experiment.

Similarly the output of B is computed from the output of A. Whenever A outputs a valid signature,
message, randomness triple (‡ú, mú, flú), we have that ‡ú = (c, y) where c = H(gr, m) and y = r +(sk+flú) ·c
for some r œ Zq. We therefore have

yÕ := y ≠ flúc = r + (sk + flú) · c ≠ flúc = r + sk · c

and thus (c, yÕ) is a valid signature on m under pk. Further, in answering signing queries for A, the adversary
B queries the exact same messages as A and therefore whenever A wins in the UFRK

SSS

A
(Ÿ) experiment, B

wins in the EUF
SSS

A
(Ÿ) experiment. Combining this with the well known proof of existential unforgeability

of Schnorr signatures by Pointcheval and Stern [PS96,PS00] rules out the existence of A under the discrete
logarithm assumption in the random oracle model.

Standard Model In the following we show that a modified version of the signature schemes due to Hofheinz
and Kiltz [HK08,HK12] is unforgeable under re-randomized keys. The original construction of Hofheinz and
Kiltz works on type 1 and type 2 pairings and the element s in their scheme is a random bit string. However,
in our case we choose s as a random element from Zq. This modification slightly increases the signature’s
size, but does not influence the original functionality or security proof. To prove the security formally, we
adapt the randomness switching technique to this setting, which allows us to reduce the unforgeability
under re-randomized keys to standard existential unforgeability. The scheme of Hofheinz and Kiltz requires
a programmable hash function [HK08,HK12], but since security properties of programmable hash functions
are not relevant to our proofs, we omit them here and refer the interested reader to [HK08,HK12].

Definition 12 (Programmable Hash Function [HK08,HK12]). A programmable hash function (Gen,
Eval) consists of two algorithms:

k Ω Gen(1Ÿ): The key generation algorithm takes as input the security parameter 1Ÿ
and generates a public

key k.
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y Ω Eval(k, m): The deterministic evaluation algorithm takes as input a key k and a message m œ {0, 1}¸

and outputs a hash value y.

Given the definition of programmable hash functions, we define the slightly modified signature scheme due
to Hofheinz Kiltz and define the re-randomization algorithms.

Definition 13 (Hofheinz Kiltz Signature Scheme [HK08, HK12]). Let PHF = (Gen, Eval) be a pro-

grammable hash function with domain {0, 1}ú
and range G1. The signature scheme HKSS is defined as

follows:

SSetup(1Ÿ): Generate a key for PHF as k Ω Gen(1Ÿ) and output pp = k.

SGen(1Ÿ): Pick sk Ω Zq at random, compute pk := gsk

2 , and output (sk, pk).

SSign(sk, m): Parse k from pp. Pick s Ω Zq uniformly at random and compute y := Eval(k, m)
1

sk+s . Output

‡ := (s, y).

SVerify(pk, m, ‡): Parse ‡ as (s, y). If e(y, pk · gs
2) = e(Eval(k, m), g2) then output 1, otherwise output 0.

RandSK(sk, fl): Compute sk
Õ := sk + fl mod q and output sk

Õ
.

RandPK(pk, fl): Compute pk
Õ := pk · gfl

2 and output pk
Õ
.

Obviously all three correctness conditions hold. It remains to show that HKSS is unforgeable under
re-randomized keys.

Theorem 2 (Unforgeability of HKSS Under re-randomized Keys). The signature scheme HKSS as

defined in Definition 13 is unforgeable under re-randomized keys (Definition 8) in the standard model, if

HKSS is unforgeable under chosen message attacks (Definition 9).

Proof. Assume towards contradiction that there exists an e�cient adversary A against the unforgeability
under re-randomizable keys. Then, we construct an adversary B against the existential unforgeability of the
underlying signature scheme, which runs A as a black-box. The algorithm B simulates the oracle O1 by
simply forwarding the query to its own signing oracle and it uses the randomness switching technique for
the simulation of O2. That is, whenever A sends a message-randomness pair (m, fl) to O2, then A queries its
signing oracle on m and adjusts the key by subtracting fl from s. The formal description of B and the oracle
O2 is given in the following:

BO(sk,·)(pk) :

(‡ú, mú, flú) Ω AO1(sk,·),O2(sk,·,·)(pk)
Parse ‡ú as (s, y)
sÕ := s + flú

output (sÕ, y), mú

O2(sk, fl, m) :
(s, y) Ω O(m)
sÕ := s ≠ fl

output (sÕ, y)

For the analysis, let us assume that A’s success probability in the experiment UFRK
HKSS

A
(Ÿ) is bigger

than 1/poly(Ÿ). It is easy to see that B is e�cient and that the simulation of A’s signing oracle O1 is perfect.
Now, we show that B also provides a perfect simulation of the oracle O2. Whenever A sends (fl, m) to O2,
then B returns a signature (sÕ, y) for which it holds that e(y, pk · gfl

2 · gsÕ

2 ) = e(Eval(k, m)
1

sk+s , gsk+fl+(s≠fl)
2 ) =

e(Eval(k, m), g2), which has obviously the correct distribution.
Finally, we argue that B outputs a valid signature whenever A outputs a valid forgery. To see this,

note that (sÕ = s + flú, y) for mú under pk, whenever A returns a valid signature (s, y) for mú under the re-
randomized key pk ·gfl

2 , since e(y, (pk ·gfl
2)·gs

2) = e(y, pk ·gfl+s
2 ) = e(y, pk ·gsÕ

2 ). Combining this with the proof of
existential unforgeability of the modified version of the Hofheinz Kiltz signature schemes from [HK08,HK12]
rules out the existence of A.
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4 E�cient Sanitizable Signatures

In this section we show how to build e�cient unlinkable sanitizable signatures from signatures with perfectly
re-randomizable keys.

4.1 Preliminaries

We recall the definitions and security notions of the other building blocks required for our construction
of sanitizable signatures. Namely we recall the definitions of CCA secure public key-encryption and non-
interactive zero-knowledge proof systems.

CCA Secure Public-key Encryption We shortly recall the definitions of a public key encryption scheme
as well as the standard notion of CCA security.

Definition 14 (Public Key Encryption Scheme). A public key encryption scheme E = (EGen, Enc, Dec)
consists of three e�cient algorithms:

EGen(1Ÿ): The key generation algorithm takes as input the security parameter 1Ÿ
and generates a key pair

(dk, ek).
Enc(ek, m): The encryption algorithm takes as input an encryption key ek and a message m œ {0, 1}ú

and

outputs a ciphertext c.

Dec(dk, c): The decryption algorithm takes as input a decryption key dk, a ciphertext c and outputs a message

m.

Correctness The scheme is correct if and only if for all Ÿ œ N, all (dk, ek) Ω EGen(1Ÿ), all m œ {0, 1}ú
,

and all c Ω Enc(ek, m), it holds that m = Dec(dk, c) = 1.

Definition 15 (Indistinguishability under Chosen Ciphertext Attacks). A public key encryption

scheme E = (EGen, Enc, Dec) has indistinguishable encryptions under chosen ciphertext attacks (IND-CCA)
if for all (possibly stateful) PPT adversaries A = (A0, A1) the probability that the experiment IND-CCA

E

A
(Ÿ)

evaluates to 1 is negligibly bigger than 1/2 (in Ÿ), where

Experiment IND-CCA
E

A
(Ÿ) :

(dk, ek) Ω EGen(1Ÿ)
b Ω {0, 1}
m0, m1 Ω ADec(dk,·)

0 (ek)
cb Ω Enc(ek, mb)
a Ω ADec

Õ(dk,cb,·)
1 (cb)

if a = b, then output 1
else output 0

Dec
Õ(dk, cb, c) :
if c ”= cb

then output Dec(dk, c)
else output ‹

Non-Interactive Zero-Knowledge Proof System We recall the definitions and security properties of
non-interactive zero-knowledge proof systems.

Definition 16 (Non-Interactive Zero-Knowledge Proof System). A non-interactive zero-knowledge

proof system (SetupZK, PZK, VZK) for a language L with the corresponding relation R consists of three algo-

rithms:

SetupZK(1Ÿ): The setup algorithm takes as input the security parameter 1Ÿ
and generates a common reference

string crs.

PZK(crs, x, w): The prove algorithm takes an input the common reference string crs, a statement x, and a

witness w and outputs a zero-knowledge proof fi.

VZK(crs, x, fi): The verification algorithm takes as input the common reference string crs, a statement x, and

a proof fi and outputs 0 or 1.
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Definition 17 (Perfect Completeness). A NIZK scheme has perfect completeness if and only if for all

Ÿ œ N and all adversaries A it holds that

Pr[ crs Ω SetupZK(1Ÿ); (x, w) Ω A(crs); fi Ω PZK(crs, x, w); VZK(crs, x, fi) = 1 | x œ L ] = 1

Soundness, Zero-Knowledge and the proof of knowledge property are defined as follows:

Definition 18 (Perfect Soundness). A NIZK scheme has perfect soundness if and only if for all Ÿ œ N
and all adversaries A it holds that

Pr[ crs Ω SetupZK(1Ÿ); (x, fi) Ω A(crs) : VZK(crs, x, fi) = 0 | x ”œ L ] = 1

Definition 19 (Zero-knowledge). A NIZK scheme has computational zero-knowledge if for all Ÿ œ N
there exists an e�cient simulator S = (S0, S1) such that for all adversaries A it holds that

-----
Pr

#
crs Ω SetupZK(1Ÿ) : APZK(crs,·,·)(crs) = 1

$

≠ Pr
Ë

(crs, T) Ω S0(1Ÿ) : AS
Õ(crs,T,·,·)(crs) = 1

È
----- Æ negl(Ÿ),

where S
Õ(crs, T, x, w) = S1(crs, T, x) if (x, w) œ R and outputs failure otherwise.

Definition 20 (Proof of Knowledge). A NIZK scheme is a proof of knowledge if there exists an e�cient

extractor Ext = (Ext0, Ext1) such that the following conditions hold:

For all polynomial time adversaries A it holds that

----
Pr[ crs Ω SetupZK(1Ÿ) : A(crs) = 1]
≠ Pr[ (crs, T) Ω Ext0(1Ÿ) : A(crs) = 1]

---- Æ negl(Ÿ).

For all polynomial time adversaries A it holds that

Pr
5

(crs, T) Ω Ext0(1Ÿ); (x, fi) Ω A(crs);
w Ω Ext1(crs, T, x, fi) : (x, w) œ R

---- VZK(crs, x, fi) = 1
6

Ø 1
poly(Ÿ) .

4.2 Our Construction

In the following, we describe our construction of a sanitizable signature scheme based on signatures with
re-randomizable keys. Similar to previous constructions [BFF+09,BFLS10], we sign the parts of the message
that cannot be changed by the sanitizer and a description of valid modifications Adm with a separate
signature scheme. The main part of our construction, and which is very di�erent from all previous schemes,
is the computation of the signature on the parts that can be modified by the sanitizer. The basic idea here
is that we compute this signature using a signature scheme with re-randomizable keys. That is, we compute
this signature using a re-randomized private and public key-pair (skÕ, pk

Õ), which was either re-randomized by
the signer or the sanitizer. To allow for an easy Proof and Judge algorithm and avoid rewinding in the proof,
we have to provide a way to check that pk

Õ is in fact the re-randomization of the signer’s or the sanitizer’s
public key. Therefore, we also include an encryption of the actual public key. In the Proof algorithm the
signer can then decrypt and return this public key along with a proof of correct decryption.

In the following, for the sake of brevity all algorithms are assumed to implicitly take the public parameters
as input.

Construction 1. Let À = (SSetup, SGen, SSign, SVerify, RandSK, RandPK) be a signature scheme with per-
fectly re-randomizable keys, ÀFix = (SSetupFix, SGenFix, SSignFix, SVerifyFix) be a deterministic signature
scheme, E = (EGen, Enc, Dec) be a public key encryption scheme, and  P oK = (SetupPoK, PPoK, VPoK) as well
as  ZK = (SetupZK, PZK, VZK) be two non-interactive zero-knowledge proof systems for the languages L1
and L2, where the language L1, used in Sign, Sanit, and Verify, contains tuples (ek, c, pk

Õ, pksan, pk) for which
there exists witness w = (Ê, fl) such that

c = Enc(ek, pk; Ê) · pk
Õ = RandPK(pk, fl)
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or
c = Enc(ek, pksan; Ê) · pk

Õ = RandPK(pksan, fl).

The second language L2, used in Proof and Judge, contains tuples (ek, c, „pk) for which there exists witness
w = (Â, dk) such that

(ek, dk) = EGen(1Ÿ; Â) · „pk = Dec(dk, c).
Define our sanitizable signature scheme SanS = (KGensig, KGensan, Sign, Sanit, Verify, Proof, Judge) as follows:
Setup and Key Generation. The setup algorithm generates two common reference strings for the two
di�erent zero-knowledge proofs (of knowledge) and the key generation algorithm the required keys. They are
formally defined as follows:

Setup(1Ÿ) :
crsPoK Ω SetupPoK(1Ÿ)
crsZK Ω SetupZK(1Ÿ)
pps Ω SSetup(1Ÿ)
pp = (crsPoK, crsZK, pps)
output pp

KGensan(1Ÿ) :
(sksan, pksan) Ω SGen(1Ÿ)
output (sksan, pksan)

KGensig(1Ÿ) :
(sk, pk) Ω SGen(1Ÿ)
(skFix, pkFix) Ω SGenFix(1Ÿ)
(dk, ek) Ω EGen(1Ÿ; Â)

sksig :=
3

skFix, sk, dk,
pkFix, pk, ek, Â

4

pksig := (pkFix, pk, ek)
output (sksig, pksig)

Signing and Sanitizing. The signing and sanitizing algorithms first parse their inputs and Sanit further
checks that Mod is actually an admissible modification and modifies the message accordingly. The Sign

algorithm now signs the fixed part with skFix, while Sanit can simply reuse the ‡Fix of the input signature.
The remainder of the two algorithms proceeds identically, by re-randomizing the respective key, encrypting
the original key, proving that sk

Õ is indeed a re-randomization and signing the full message together with
signer’s and sanitizer’s public keys as seen in the following:

Sign(m, sksig, pksan, Adm) :
Parse sksig as
(skFix, sk, dk, pkFix, pk, ek, Â).

pksig := (pkFix, pk, ek)
mFix := (FixAdm(m), Adm, pksan)
‡Fix := SSignFix(skFix, mFix)
fl Ω ‰

sk
Õ Ω RandSK(sk, fl)

pk
Õ Ω RandPK(pk, fl)

c Ω Enc(ek, pk; Ê)
x := (c, ek, pk, pksan, pk

Õ)
· Ω PPoK(crs, x, (fl, Ê))
‡Õ := SSign(skÕ, (m, pksig, pksan))
output ‡ = (‡Fix, ‡Õ, Adm, pk

Õ, c, ·)

Sanit(m, Mod, ‡, pksig, sksan) :

Parse pksig as (pkFix, pk, ek).
Parse ‡ as (‡Fix, ‡Õ, Adm, pk

Õ, c, ·).
If Adm(Mod) = 0
output ‹

‚m := Mod(m)
fl Ω ‰

„
sk

Õ Ω RandSK(sksan, fl)
„
pk

Õ Ω RandPK(pksan, fl)
‚c Ω Enc(ek, pksan; Ê)

x := (‚c, ek, pk, pksan, „
pk

Õ)
‚· Ω PPoK(crs, x, (fl, Ê))

‚‡Õ := SSign( ‚sk
Õ

, ( ‚m, pksig, pksan))

output ( ‚m, ‚‡ = (‡Fix, ‚‡Õ, Adm, „
pk

Õ, ‚c, ‚·))
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Verification. The verification algorithm checks that both signatures and the proof of knowledge verify:

Verify(m, ‡, pksig, pksan) :

Parse pksig as (pkFix, pk, ek).
Parse ‡ as (‡Fix, ‡Õ, Adm, pk

Õ, c, ·).
mFix := (FixAdm(m), Adm, pksan)
x := (c, ek, pk, pksan, pk

Õ)

if

Q

a
SVerifyFix(pkFix, mFix, ‡Fix) = 1

and SVerify(pk
Õ, (m, pksig, pksan), ‡Õ) = 1

and VPoK(crs, x, ·) = 1

R

b

then output 1
else output 0

Proving and Judging. The algorithm Proof first verifies that the given signature is indeed valid. It then
parses its inputs and decrypts the ciphertext c, thus revealing who computed the signature. Moreover, it
computes a zero-knowledge proof asserting that the decryption was performed correctly. The Judge checks
whether the proof of decryption is correct. If the proof fi contains pksan, then the Judge algorithm outputs
San. In all other cases, Judge returns Sign.

Proof(sksig, m, ‡, pksan) :
If Verify(m, ‡, pksig, pksan) = 0

output ‹
Parse sksig as

(skFix, sk, dk, pkFix, pk, ek, Â).
Parse ‡ as (‡Fix, ‡Õ, Adm, pk

Õ, c, ·).
„pk Ω Dec(dk, c)

x := (ek, c, „pk)
„ Ω PZK(crs, x, (Â, dk))

output („pk, „)

Judge(m, ‡, pksig, pksan, fi) :

Parse pksig as (pkFix, pk, ek).
Parse ‡ as (‡Fix, ‡Õ, Adm, pk

Õ, c, ·).

Parse fi as („pk, „).

x := (ek, c, „pk)

if
3

pksan = „pk

and VZK(crs, x, „) = 1

4

then output San
else output Sign

4.3 Security Proof

We now proceed by showing that our construction satisfies all necessary security definitions of a sanitizable
signature scheme.

Theorem 3 (Sanitizer Accountability). If À = (SSetup, SGen, SSign, SVerify, RandSK, RandPK) is a sig-

nature scheme with perfectly re-randomizable keys that is unforgeable under re-randomized keys  ZK =
(SetupZK, PZK, VZK) is a perfectly sound non-interactive zero knowledge proof system, and  P oK = (SetupPoK,
PPoK, VPoK) is a perfectly sound non-interactive zero-knowledge proof of knowledge system, then the construc-

tion given in Section 4 is sanitizer-accountable.

Proof. Let A be a probabilistic polynomial time adversary against the sanitizer accountability of SanS.
Let (pk

ú

san, mú, ‡ú) denote the output of A, where ‡ú can be parsed as (‡Fix, ‡Õ, Adm, pk
Õ, c, ·) and let

pksig = (pkFix, pk, ek).
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By definition of Proof it holds that fi = („pk, „) and Dec(dk, c) = „pk. Observe that in the case of
San-Acc

SanS
A

(Ÿ) = 1, the following conditions must hold by definition of sanitizer accountability:

(pk
ú

san, mú) ”= (pksan,i, mi) (1)
Verify(mú, ‡ú, pksig, pk

ú

san) = 1 (2)
Judge(mú, ‡ú, pksig, pk

ú

san, fi) = Sign (3)

where (mi, Admi, pksan,i) denotes the ith query to the Sign oracle.
By the definition of Verify, it follows from Equation 2 that

SVerify(pk
Õ, (mú, pksig, pk

ú

san), ‡Õ) = 1 (4)
and VPoK(crsPoK, (c, ek, pk, pk

ú

san, pk
Õ), ·) = 1. (5)

From Equation 3 it follows by the definition of Judge that at least one of the following must not hold:

„pk = pk
ú

san (6)
or Verify(mú, ‡ú, pksig, pk

ú

san) = 1 (7)

or VZK(crsZK, (ek, c, „pk), „) = 1 (8)

However, clearly Equation 7 must hold since this is already ensured by Equation 2, and Equation 8
clearly follows from the correctness of  ZK and the fact that „ is computed honestly by Judge. It must
thus hold that „pk ”= pk

ú

san. Since the correctness of E and the perfect soundness of  P oK guarantee, that
„pk œ {pk, pk

ú

san} it therefore follows that

„pk = pk. (9)

Now, consider reduction B1, depicted in Figure 1 against the unforgeability under re-randomized keys of
the underlying signature scheme. Observe that this reduction is clearly e�cient and perfectly simulates the
view of A in the game San-Acc

SanS
A

(Ÿ). Furthermore, because of Equation 1, (mú, pksig, pk
ú

san) is a message
never queried to the signing oracle. As, further, whenever the extractor is successful in extracting the witness
from · , it follows from Equation 4 and Equation 9 that the forgery output by B1 is valid, it holds that

Pr
Ë

UFRK
À
B1(Ÿ) = 1

È
Ø 1

poly(Ÿ) Pr
#
San-Acc

SanS
A

(Ÿ) = 1
$

which must be negligible because the signature scheme is unforgeable under re-randomized keys.
Thus it must hold that Pr

#
San-Acc

SanS
A

(Ÿ) = 1
$

is negligible.

Theorem 4 (Signer Accountability). If À = (SSetup, SGen, SSign, SVerify, RandSK, RandPK) is a signa-

ture scheme with perfectly re-randomizable keys that is unforgeable under re-randomized keys and  P oK =
(SetupPoK, PPoK, VPoK) is a perfectly sound non-interactive zero-knowledge proof of knowledge, then the con-

struction given in Section 4 is signer-accountable.

Proof. Let A be a probabilistic polynomial time adversary against the signer accountability of SanS. Let
(pk

ú

sig, mú, ‡ú, fiú) denote the output of A, where pk
ú

sig can be parsed as (pkFix
ú, pk

ú, ek
ú), ‡ú can be parsed

as (‡Fix, ‡Õ, Adm, pk
Õ, c, ·), and fiú can be parsed as („pk, „).

Observe that in the case of Sig-Acc
SanS
A

(Ÿ) = 1, the following conditions must hold by definition of signer
accountability:

(pk
ú

sig, mú) ”= (pksig,i, mi) (10)
Verify(mú, ‡ú, pk

ú

sig, pksan) = 1 (11)
Judge(mú, ‡ú, pk

ú

sig, pksan, fiú) = San (12)
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B
O1(sk,·),O2(sk,·,·)
1 (pk) :

crsPoK Ω Ext0(1Ÿ)
(skFix, pkFix) Ω SGenFix(1Ÿ)
(dk, ek) Ω EGen(1Ÿ; Â)
pksig = (pkFix, pk, ek)

(pkú

san, mú, ‡ú) Ω A
Sign

Õ(·,·,·),Proof
Õ(·,·,·)(pksig)

Parse ‡ú as (‡Fix, ‡Õ, Adm, pkÕ, c, ·)
x := (c, ek, pk, pkú

san, pkÕ)

flú
Ω ExtA(·)

1 (crs, T, x, ·)
output ((mú, pksig, pkú

san), ‡Õ, flú)

SignÕ(m, pksan, Adm) :

fl Ω ‰

pkÕ
Ω RandPK(pk, fl)

c Ω Enc(ek, pk; Ê)
x := (c, ek, pk, pksan, pkÕ)
· Ω PPoK(crsPoK, x, (fl, Ê))
mFix := (FixAdm(m), Adm, pksan)
‡Fix Ω SSignFix(skFix, mFix)
‡Õ

Ω O2(sk, (m, pksig, pksan), fl)
output ‡ = (‡Fix, ‡Õ, Adm, pkÕ, c, ·)

ProofÕ(m, ‡, pksan) :

Parse ‡ as (‡Fix, ‡Õ, Adm, pkÕ, c, ·).
If Verify(m, ‡, pksig, pksan) = 0
return ‹

‚pk Ω Dec(dk, c)

x := (ek, c, ‚pk)
„ Ω PZK(crsZK, x, (Â, dk))

output ( ‚pk, „)

Fig. 1. Description of reduction B1, reducing the sanitizer accountability of SanS against the UFRK security of À.

where (mi, Modi, ‡i, pksig,i) and (mÕ

i, ‡Õ

i) denotes the ith query and answer to the Sanit oracle respectively.
By the definition of Verify, it follows from Equation 11 that

SVerify(pk
Õ, (mú, pk

ú

sig, pksan), ‡Õ) = 1 (13)
VPoK(crsPoK, (c, ek, pk, pksan, pk

Õ), ·) = 1. (14)

From Equation 12 it follows by the definition of Judge that all of the following must hold:

pksan = „pk (15)

VZK(crsZK, (ek
ú, c, „pk), „) = 1. (16)

Now, consider reduction B2, depicted in Figure 2 against the unforgeability under re-randomized keys of
the underlying signature scheme.

Observe that this reduction is clearly e�cient and perfectly simulates the view of A in the game
Sig-Acc

SanS
A

(Ÿ). Furthermore, because of Equation 10, (mú, pksig, pk
ú

san) is a message never queried to the
signing oracle. As, further, whenever the extractor is successful in extracting the witness from · , it follows
from Equation 13 and Equation 15 that the forgery output by B2 is valid, it holds that

Pr
Ë

UFRK
À
B2(Ÿ) = 1

È
Ø 1

poly(Ÿ) Pr
#
Sig-Acc

SanS
A

(Ÿ) = 1
$

which must be negligible because the signature scheme is unforgeable under re-randomized keys.
Thus it must hold that Pr

#
Sig-Acc

SanS
A

(Ÿ) = 1
$

is negligible.
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B
O1(sksan,·),O2(sksan,·,·)
2 (pksan) :

crsPoK Ω Ext0(1Ÿ)

(pkú

sig, mú, ‡ú) Ω A
Sanit

Õ(·,·,·)(pksan)
Parse ‡ú as (‡Fix, ‡Õ, Adm, pkÕ, c, ·)
Parse pkú

sig as (pkFix, pk, ek)
x := (c, ek, pk, pksan, pkÕ)

flú
Ω ExtA(·)

1 (crsPoK, TPoK, x, ·)
output ((mú, pkú

sig, pksan), ‡Õ, flú)

SanitÕ(m, ‡, Mod, pksig) :

Parse pksig as (pkFix, pk, ek).
Parse ‡ as (‡Fix, ‡Õ, Adm, pkÕ, c, ·).
If Adm(Mod) = 0

output ‹

‚mÕ := Mod(m)
fl Ω ‰

‚pkÕ

Ω RandPK(pksan, fl)
‚c Ω Enc(ek, pksan; Ê)

x := (c, ek, pk, pksan, ‚pkÕ

)
‚· Ω PPoK(crsPoK, x, (fl, Ê))
‚‡Õ

Ω O2(sk, (‚mÕ, pksig, pksan), fl)

‚‡ = (‡Fix, ‚‡Õ, Adm, ‚pkÕ

,‚c, ‚·)
output (mÕ, ‚‡)

Fig. 2. Description of reduction B2, reducing the signer accountability of SanS against the UFRK security of À.

Theorem 5 (Immutability). If the deterministic signature scheme ÀFix = (SSetupFix, SGenFix, SSignFix,
SVerifyFix) is strongly existentially unforgeable, then the construction given in Section 4 is immutable.

Proof. Let A be a probabilistic polynomial time adversary against the immutability of SanS. Let (pk
ú

san, mú,
‡ú) denote the output of A, where ‡ú can be parsed as (‡Fix, ‡Õ, Adm, pk

Õ, c, ·).
Observe that in the case of Immut

SanS
A

(Ÿ) = 1, it must hold by definition of immutability that

Verify(mú, ‡ú, pksig, pk
ú

san) = 1 (17)

as well as at least one of the following

pk
ú

san ”= pksan,i (18)
or mú /œ {Mod(mi) | Mod with Admi(Mod) = 1} (19)

where (mi, Modi, ‡i, pksig,i) and (mÕ

i, ‡Õ

i) denotes the ith query and answer to the Sanit oracle respectively.
By the definition of Verify, it follows from Equation 17 that

SVerifyFix(pkFix, (FixAdm(mú), Adm, pk
ú

san), ‡Fix) = 1. (20)

From Equation 19 it follows due to the maximality of Fix, that

FixAdm(mú) ”= FixAdmi(mi) (21)

and combining Equation 18 with Equation 21 we get that

(FixAdm(mú), Adm, pk
ú

san) ”= (FixAdmi(mi), Admi, pksan,i) (22)

for all i.
Now, consider reduction B3, depicted in Figure 3 against the strong existential unforgeability of the

underlying signature scheme.
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B
O(sk,·)
3 (pkFix) :

crsPoK Ω SetupPoK(1Ÿ)
crsZK Ω SetupZK(1Ÿ)
(sk, pk) Ω SGen(1Ÿ)
(dk, ek) Ω EGen(1Ÿ; Â)
pksig := (pkFix, pk, ek)

(mú, ‡ú, pkú

san) Ω A
Sign

Õ(·,·,·),Proof(sksig,·,·)(pksig)
Parse ‡ú as (‡Fix, ‡Õ, Adm, pkÕ, c, ·).
mú

Fix := (FixAdm(m), Adm, pkú

san)
output (mú

Fix, ‡ú

Fix)

SignÕ(m, pksan, Adm) :

fl Ω ‰

pkÕ
Ω RandPK(pk, fl)

skÕ
Ω RandPK(sk, fl)

c Ω Enc(ek, pk; Ê)
x := (c, ek, pk, pksan, pkÕ)
· Ω PPoK(crsPoK, x, (fl, Ê))
mFix := (FixAdm(m), Adm, pksan)
‡Fix Ω O(mFix)
‡Õ

Ω SSign(skÕ, m, fl)
output ‡ = (‡Fix, ‡Õ, Adm, pkÕ, c, ·)

Fig. 3. Description of reduction B3, reducing the immutability of SanS against the s-EUF security of ÀFix.

Observe that this reduction is clearly e�cient and perfectly simulates the view of A in the game
Immut

SanS
A

(Ÿ). Furthermore, because of Equation 22, mú

Fix is a message never queried to the signing ora-
cle. It therefore holds that

Pr
Ë

s-EUF
ÀFix
B3

(Ÿ) = 1
È

Ø Pr
#
Immut

SanS
A

(Ÿ) = 1
$

which must be negligible because the signature scheme is strongly existentially unforgeable.
Thus it must hold that Pr

#
Immut

SanS
A

(Ÿ) = 1
$

is negligible.

Theorem 6 ((Proof-Restricted) Transparency). If  P oK = (SetupPoK, PPoK, VPoK) is a computation-

ally zero-knowledge perfectly sound proof of knowledge system,  ZK = (SetupZK, PZK, VZK) is a computa-

tionally zero-knowledge proof system, E = (EGen, Enc, Dec) is a CCA-secure public key encryption scheme,

and À = (SSetup, SGen, SSign, SVerify, RandSK, RandPK) is a signature scheme with perfectly re-randomizable

keys that is unforgeable under re-randomized keys, then SanS is (proof-restrictedly) transparent.

Proof. We use a series of games to prove that the two cases of the Trans
A

SanS(Ÿ) are indistinguishable for any
polynomial time adversary A.
Game0 is exactly the Trans

A

SanS(Ÿ) experiment with b fixed to 1.
Game1 works exactly as Game0, except that crsPoK is chosen as (crsPoK, TPoK) Ω SPoK,0(1Ÿ) and the proofs · in

the answers to Sanit/Sign queries are computed as · Ω SPoK,1(crs, TPoK, x), where SPoK = (SPoK,0, SPoK,1)
is the simulator of  P oK .

Game2 works exactly as Game1, except that crsZK is chosen as (crsZK, TZK) Ω SZK,0(1Ÿ) and the proofs
of decryption „ in the answers to Proof queries are computed as „ Ω SZK,1(crs, TZK, x), where SZK =
(SZK,0, SZK,1) is the simulator of  ZK .

Game3 works exactly as Game2, except for the following changes. The ciphertexts c in the answers to
Sanit/Sign queries are computed as c Ω Enc(ek, pk) for an independently chosen but fixed public key
pk. Let CSanit/Sign be the set of ciphertexts computed this way. For ciphertexts c /œ CSanit/Sign, the Proof

oracle proceeds exactly as in the previous game. For ciphertexts c œ CSanit/Sign however, the Proof oracle
sets „pk := pk instead of decrypting c, before proceeding as before.

Game4 works exactly as Game3, except that the bit b is fixed to 0 and the Proof oracle sets „pk := pksan for
ciphertexts c œ CSanit/Sign.

Game5 works exactly as Game4, except that the ciphertext c in the answers to queries to the Sanit/Sign

oracle is computed as c Ω Enc(ek, pksan) and the Proof oracle again always uses decryption to determine
„pk.

Game6 works exactly as Game5, except that crsZK is once again chosen honestly as crsZK Ω SetupZK(1Ÿ)
and the proofs of decryption „ in the answers to Proof queries are computed honestly again as „ Ω
PZK(crsZK, x, (Â, dk)).
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Game7 works exactly as Game6, except that crsPoK is once again chosen honestly as crsPoK Ω SetupZK(1Ÿ) and
the proofs · in the answers to Sanit/Sign queries are computed honestly as · Ω PPoK(crsPoK, x, (fl, Ê)).
This is exactly the Trans

A

SanS(Ÿ) experiment with b fixed to 0.
We argue that each pair of neighboring games cannot be distinguished, except with negligible probability,
by a probabilistic polynomial time adversary.

Game0 ¥ Game1 Let A be a probabilistic polynomial time adversary distinguishing Game0 and Game1 with
probability 1/2+‘(Ÿ). Now, consider reduction B4, depicted in Figure 4 against the zero-knowledge property
of the underlying proof of knowledge system.

B
O(·,·)
4 (crsPoK) :

crsZK Ω SetupZK(1Ÿ)
pp Ω SSetup(1Ÿ)
(sk, pk) Ω SGen(1Ÿ)
(skFix, pkFix) Ω SGenFix(1Ÿ)
(dk, ek) Ω EGen(1Ÿ; Â)
sksig := (skFix, sk, dk, pkFix, pk, ek, Â)
pksig := (pkFix, pk, ek)
(sksan, pksan) Ω SGen(1Ÿ)

a Ω A

Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof(sksig,·,·,·),Sanit/Sign
Õ(·,·,·) (pksig, pksan)

output a

Sanit/SignÕ(m, Mod, Adm) :

If Adm(Mod) = 0
output ‹

fl Ω ‰

skÕ
Ω RandSK(sksig, fl)

pkÕ
Ω RandPK(pksig, fl)

mFix := (FixAdm(m), Adm, pksan)
‡Fix := SSignFix(skFix, mFix)
mÕ := Mod(m)
‡Õ := SSign(skÕ, mÕ)
c Ω Enc(ek, pk)
x := (c, ek, pk, pksan, pkÕ)
· Ω O(x, (fl, Ê))
‡ := (‡Fix, ‡Õ, Adm, pkÕ, c, ·)
return (mÕ, ‡)

Fig. 4. Reduction of the indistinguishability of Game0 and Game1 in the transparency proof to the zero-knowledge
property of the underlying proof system  P oK .

Observe that this reduction is clearly e�cient and perfectly simulates the view of A in the Game0 if the
oracle of B4 is the honest prover and in Game1 if the oracle of B4 is the simulator. It thus follows immediately

------

Pr
Ë

crsPoK Ω SetupPoK(1Ÿ) : BPPoK(crsPoK,·,·)
4 (crsPoK) = 1

È

≠ Pr
Ë

(crsPoK, TPoK) Ω SPoK,0(1Ÿ) : BS
Õ(crsPoK,TPoK,·,·)

4 (crsPoK) = 1
È

------
= ‘(Ÿ).

Therefore ‘(Ÿ) must be negligible, because  P oK is zero knowledge.

Game1 ¥ Game2 Let A be a probabilistic polynomial time adversary distinguishing Game1 and Game2 with
probability 1/2+‘(Ÿ). Now, consider reduction B5, depicted in Figure 5 against the zero-knowledge property
of the underlying non-interactive zero knowledge proof system.

Observe that this reduction is clearly e�cient and perfectly simulates the view of A in the Game1 if the
oracle of B5 is the honest prover and in Game2 if the oracle of B5 is the simulator. It thus follows immediately

------

Pr
Ë

crsZK Ω SetupZK(1Ÿ) : BPZK(crsZK,·,·)
5 (crsZK) = 1

È

≠ Pr
Ë

(crsZK, TZK) Ω SZK,0(1Ÿ) : BS
Õ(crsZK,TZK,·,·)

5 (crsZK) = 1
È

------
= ‘(Ÿ).

Therefore ‘(Ÿ) must be negligible, because  P oK is zero knowledge.
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Game2 ¥ Game3 Let A be a probabilistic polynomial time adversary distinguishing Game2 and Game3 with
probability 1/2 + ‘(Ÿ). Now, consider reduction B6, depicted in Figure 6 against the CCA security of the
underlying encryption scheme.

Note, that we reduce to a variant of CCA security, where the adversary can send multiple challenges
to an oracle O. The decryption oracle will not answer any queries made up of ciphertexts output by O.
This variant of CCA security follows from standard CCA security by a standard hybrid argument. Observe
that this reduction is clearly e�cient Further, if the bit chosen by the IND-CCA experiment is 0, then B6
perfectly simulates Game2. The only place where the reduction deviates from the exact behavior of Game2

is in answering Proof queries for ciphertexts in CSanit/Sign. However, even in those cases, the “decryption” is
in fact correct, and since the proof of decryption is simulated, the fact that the witness is not known does
not change the distribution of the answer.

If the bit chosen by the CCA experiment is 1, then B6 perfectly simulates Game3. It thus follows that

Pr
Ë
IND-CCA

E

BA
6

(Ÿ) = 1
È

Æ 1
2 + ‘(Ÿ)

Therefore ‘(Ÿ) must be negligible, because E is CCA secure.

Game3 ¥ Game4 The only di�erences between the two games are the way in which queries to Sanit/Sign

and Proof oracles are answered. In the case of the Sanit/Sign oracle, the only di�erence is, that in Game3

the signer’s key is re-randomized and in Game4, the sanitizer’s key is re-randomized. However, by virtue
of the perfect re-randomizability property of the signature scheme, the re-randomized keys are in fact dis-
tributed identically in both cases. Further, the remainder of the signature is computed independently from
the re-randomization factor fl due to the simulation of the proof · . Therefore, the outputs of Sanit/Sign are
distributed identically in both cases.

We denote by SSanit/Sign the sets of signatures output as answers by the Sanit/Sign oracle. In the case of the
Proof oracle, there is only a di�erence, if the attacker makes a valid query (m, ‡ = (‡Fix, ‡Õ, Adm, pk

Õ, c, ·),
pk

Õ

san) such that the following conditions hold.

Verify(m, ‡, pksig, pk
Õ

san) = 1 (23)
÷(‡Fix,i, ‡Õ

i, Admi, pk
Õ

i, ci, ·i) œ SSanit/Sign : c = ci, (24)

Let query denote the event that such a query happens. We can split the probability of query occurs as follows:

Pr[ query] = Pr
#
query · pk

Õ

san ”= pksan

$
+ Pr

#
query · pk

Õ

san = pksan

$
.

B
O(·,·)
5 (crsZK) :

(crsPoK, TPoK) Ω SPoK,0(1Ÿ)
pp Ω SSetup(1Ÿ)
(sk, pk) Ω SGen(1Ÿ)
(skFix, pkFix) Ω SGenFix(1Ÿ)
(dk, ek) Ω EGen(1Ÿ; Â)
sksig := (skFix, sk, dk, pkFix, pk, ek, Â)
pksig := (pkFix, pk, ek)
(sksan, pksan) Ω SGen(1Ÿ)

a Ω A

Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof
Õ(·,·,·),Sanit/Sign(·,·,·) (pksig, pksan)

output a

ProofÕ(m, ‡, pksan) :

If Verify(m, ‡, pksig, pksan) = 0
return ‹

Extract c from ‡.

‚pk Ω Dec(dk, c)

x := (ek, c, ‚pk)
„ Ω O(x, (Â, dk))

output ( ‚pk, „)

Fig. 5. Reduction of the indistinguishability of Game1 and Game2 in the transparency proof to the zero-knowledge
property of the underlying proof system  ZK .
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B
Dec(dk,·),O(·,·)
6 (ek) :

(crsPoK, TPoK) Ω SPoK,0(1Ÿ)
(crsZK, TZK) Ω SZK,0(1Ÿ)
pp Ω SSetup(1Ÿ)
(sk, pk) Ω SGen(1Ÿ)
(skFix, pkFix) Ω SGenFix(1Ÿ)
sksig := (skFix, sk, ?, pkFix, pk, ek, ?)
pksig := (pkFix, pk, ek)
(sksan, pksan) Ω SGen(1Ÿ)
(sk, pk) Ω SGen(1Ÿ)
CSanit/Sign := ÿ

a Ω A

Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof
Õ(·,·,·),Sanit/Sign

Õ(·,·,·) (pksig, pksan)
Output a

Sanit/SignÕ(m, Mod, Adm) :

fl Ω ‰

skÕ
Ω RandSK(sk, fl)

pkÕ
Ω RandPK(pk, fl)

‡Fix := SSignFix(skFix, mFix)
mÕ := Mod(m)
‡Õ := SSign(skÕ, mÕ)
c Ω O(pk, pk)
CSanit/Sign := CSanit/Sign fi {c}

x := (c, ek, pk, pksan, pkÕ)
· Ω SPoK,1(crsPoK, TPoK, x)
‡ := (‡Fix, ‡Õ, Adm, pkÕ, c, ·)
return (mÕ, ‡)

ProofÕ(m, ‡, pksan) :

If Verify(m, ‡, pksig, pksan) = 0
return ‹

Extract c from ‡.

If c œ CSanit/Sign

‚pk := pk
else

‚pk Ω Dec(c)

x := (ek, c, ‚pk)
„ Ω SZK,(crsZK, x)

output ( ‚pk, „)

Fig. 6. Reduction of the indistinguishability of Game2 and Game3 to the CCA security of the underlying encryption
scheme.

Note that in the first case A must compute a new proof · , such that

VPoK(crsPoK, (ek, c, pk, pk
Õ

san, pk
Õ), ·) = 1.

Since c is an encryption of pk, and pk ”= pk except with negligible probability, the perfect soundness of  P oK

implies that pk
Õ

san = pk. This leads to a trivial reduction to the CCA security (even one-wayness) of the
encryption scheme E .

In the second case, we can reduce to the UFRK security of the signature scheme À as depicted in Figure 7.

B
O1(sk,·),O2(sk,·,·)
8 (pk

UFRK
) :

(crsPoK, TPoK) Ω SPoK,0(1Ÿ)
(crsZK, TZK) Ω SZK,0(1Ÿ)
pp Ω SSetup(1Ÿ)
(sk, pk) Ω SGen(1Ÿ)
(skFix, pkFix) Ω SGenFix(1Ÿ)
(dk, ek) Ω EGen(1Ÿ; Â)
sksig := (skFix, sk, dk, pkFix, pk, ek, Â)
pksig := (pkFix, pk, ek)
(sksan, pksan) Ω SGen(1Ÿ)
(sk, pk) Ω SGen(1Ÿ)
CSanit/Sign := ÿ

A

Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof
Õ(·,·,·),Sanit/Sign

Õ(·,·,·) (pksig, pksan)

Sanit/SignÕ(m, Mod, Adm) :

fl Ω ‰

pkÕ
Ω RandPK(pk

UFRK
, fl)

‡Fix := SSignFix(skFix, mFix)
mÕ := Mod(m)
‡Õ := O2(mÕ, fl)
c Ω Enc(ek, pk)
CSanit/Sign := CSanit/Sign fi {(c, fl)}
x := (c, ek, pk, pksan, pkÕ)
· Ω SPoK,1(crsPoK, TPoK, x)
‡ := (‡Fix, ‡Õ, Adm, pkÕ, c, ·)
return (mÕ, ‡)

ProofÕ(m, ‡, pkÕ

san) :

If Verify(m, ‡, pksig, pkÕ

san) = 0
return ‹

Parse ‡ as (‡Fix, ‡Õ, Adm, pkÕ, c, ·).
If (ci, fli) œ CSanit/Sign with ci = c

abort reduction, and output
(m, ‡Õ, fli) as forgery

‚pk Ω Dec(c)

x := (ek, c, ‚pk)
„ Ω SZK,(crsZK, x)

output ( ‚pk, „)

Fig. 7. Reduction of the indistinguishability of Game3 and Game4 in the case where pkÕ

san = pksan to the UFRK
security of the underlying signature scheme.

24



Since the reduction only runs a constant number of polynomial time bounded algorithms, the reduction
B8 is clearly e�cient.

Further, it perfectly simulates both games up until a Proof query is made satisfying Equation 23
and Equation 24. Once such a query is made, the reduction outputs (m, ‡Õ, fli) as a forgery. The def-
inition of transparency guarantees that m is a new message that has not been queried to the UFRK

signing oracle before. The fact that Verify(m, ‡, pksig, pk
Õ

san) = 1 guarantees that SVerify(pk
Õ, m, ‡Õ) =

1 and that VPoK(crsPoK, (ek, c, pk, pk
Õ

san, pk
Õ), ·) = 1). In the case where pk

Õ

san = pksan, it holds that
(ek, c, pk, pk

Õ

san, pk
Õ) /œ L1. Therefore, due to the perfect soundness, A cannot compute · for a new statement

of this form. This implies that
pk

Õ = RandPK(pk
UFRK

, fli),
and therefore (m, ‡Õ, fli) is a valid forgery.

It thus follows that

Pr[ query] = Pr[ query · · ”= ·i] + Pr[ query · · = ·i]

Æ
3

Pr
Ë

IND-CCA
E

BA
7

(Ÿ)
È

≠ 1
2

4
+ Pr

Ë
UFRK

E

BA
8

(Ÿ)
È

and therefore query happens only with negligible probability and Game3 and Game4 are thus indistinguishable.

Game4 ¥ Game5 This hop is completely symmetrical to the hop between Game2 to Game3. The reduction
therefore also works almost identically. The only di�erence being that the sanitizer’s key is randomized
instead of the signer’s when answering Sanit/Sign queries and and the Proof

Õ oracle sets „pk := pksan for
ciphertexts c œ CSanit/Sign.

Game5 ¥ Game6 This hop essentially reverts the changes made in the hop from Game1 to Game2. The reduc-
tion therefore also works almost identically. The only di�erence being that the sanitizer’s key is randomized
instead of the signer’s when answering Sanit/Sign queries.

Game6 ¥ Game7 Just as in the hop before, this hop essentially reverts the changes made in the hop from
Game0 to Game1. The reduction is once again almost identically, the di�erence being that the sanitizer’s key
is randomized instead of the signer’s when answering Sanit/Sign queries.

Since the distinguishing advantage of an probabilistic polynomial time attacker is negligible for each
step, it follows by a simple union bound that the two cases of Trans

A

SanS(Ÿ) with b = 1 and b = 0 are also
indistinguishable and thus SanS is proof-restrictedly transparent.

Theorem 7 (Unlinkability). If the deterministic signature scheme ÀFix = (SSetupFix, SGenFix, SSignFix,
SVerifyFix) is is strongly existentially unforgeable, then the construction given in Section 4 is unlinkable.

Proof. Let A be a probabilistic polynomial time adversary against the signer unlinkability of SanS. Let

((m0
i , Mod0

i , ‡0
i ), (m1

i , Mod1
i , ‡1

i ))

be a query made by A to the LoRSanit oracle, where ‡b
i can be parsed as (‡b

Fix,i, ‡Õ

i
b, Admb

i , pk
Õb
i , cb

i , · b
i ). The

only di�erence between the two cases of the unlinkability experiment is the distribution of the answers to
these queries if it holds that

Verify(m0
i , ‡0

i , pksig, pksan) = 1 (25)
Verify(m1

i , ‡1
i , pksig, pksan) = 1 (26)
Adm0

i (Mod0
i ) ”= 0 (27)

Adm1
i (Mod1

i ) ”= 0 (28)
Mod0

i (m0
i ) = Mod1

i (m1
i ) (29)

Adm0
i = Adm1

i (30)
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Let (mú

b , ‡ú

b ) denote the answer to such a query depending on the choice of b in the experiment, where ‡ú

b
can be parsed as (‡Fix,b, ‡Õ

b, Admb, pk
Õ

b, cb, ·b).
From Equation 30 it follows directly that

Adm0 = Adm1 (31)

Further, it follows from this, the definition of Sanit, and the perfect re-randomizability of the signature
scheme À that the the distributions

(‡Õ

0, Adm0, pk
Õ

0, c0, ·0) ≥ (‡Õ

1, Adm1, pk
Õ

1, c1, ·1) (32)

are identical.
From Equation 30 it follows by the uniqueness of FixAdm, that

FixAdm0
i
(m0

i , Adm0, pksan) = FixAdm1
i
(m1

i , Adm1, pksan). (33)

It holds by Equation 32, that the view of A only di�ers in the two cases of the unlinkability experiment,
if it makes a query to LoRSanit such that in addition to Equation 25 through Equation 30 it holds that

‡0
Fix,i ”= ‡1

Fix,i (34)

We denote by query the event that such a query happens and thus get

Pr
#
Link

SanS
A

(Ÿ) = 1
$

= 1
2 + Pr[ query]

Now, consider reduction B9, depicted in Figure 8 against the strong existential unforgeability of the
underlying signature scheme.

Observe that this reduction is clearly e�cient and perfectly simulates the view of A in the game
Link

SanS
A

(Ÿ) unless query occurs. Whenever query occurs, it holds because of Equation 33 that m0
Fix = m1

Fix.
Further, since À is deterministic, it holds that

{(m0
Fix, ‡0

Fix), (m1
Fix, ‡1

Fix)} fl L‡ ”= ÿ.

Together with Equation 25 and Equation 26 it thus follows that

Pr[ query] = Pr[s-EUF
À
B9(Ÿ) = 1

and therefore
Pr[Link

SanS
A

(Ÿ) = 1] = 1
2 + Pr[s-EUF

À
B9(Ÿ) = 1],

where the second part of the sum must be negligible because the signature scheme is strongly existentially
unforgeable.

Thus it must hold that Pr
#
Link

SanS
A

(Ÿ) = 1
$

is only negligibly greater than 1/2.

5 Instantiating the Construction

We instantiate our generic construction with compatible and e�cient instantiations in the random oracle
model. For the two signature schemes, we choose standard Schnorr signatures as defined in Definition 11
for À, as well as a derandomized2 version of Schnorr signatures for ÀFix

3. The encryption scheme and
proof systems are instantiated with the Cramer Shoup encryption scheme [CS98], and À-protocols that
we convert into a non-interactive zero-knowledge proof via the Fiat-Shamir transform [FS87]. The Cramer
Shoup encryption scheme is defined as follows:
2 The randomness is generated by a PRF
3 Note, that while the original security proof [PS96, PS00] for Schnorr signatures only proves standard existential

unforgeability, it can be easily adapted to prove strong existential unforgeability
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B
O(skFix,·)
9 (pkFix) :

(dk, ek, Â) Ω EGen(1Ÿ; Â)
(sk, pk) Ω SGen(1Ÿ)
pksig := (pkFix, pk, ek)
(sksan, pksan) Ω SGen(1Ÿ)
L‡ = ÿ

b Ω {0, 1}

A

Sign
Õ(·,·,·),Sanit(·,·,·,·,sksan),

Proof(sksig,·,·),LoRSanit
Õ(·,·) (pksig, pksan)

SignÕ(m, pksan, Adm) :

mFix := (FixAdm(m), Adm, pksan)
‡Fix Ω O(mFix)
L‡ := L‡ fi {(mFix, ‡Fix)}
fl Ω ‰

pkÕ
Ω RandPK(pk, fl)

skÕ
Ω RandSK(sk, fl)

c Ω Enc(ek, pk; Ê)
x := (c, ek, pk, pksan, pkÕ)
· Ω PPoK(crsPoK, x, (fl, Ê))
output (‡Fix, ‡Õ, Adm, pkÕ, c, ·)

LoRSanitÕ((m0, Mod0, ‡0), (m1, Mod1, ‡1)) :

Parse ‡0 as (‡0
Fix, ‡Õ0

, Adm0, pkÕ0
, c0, ·0).

Parse ‡1 as (‡1
Fix, ‡Õ1

, Adm1, pkÕ1
, c1, ·1).

m0
Fix := (Fix0

Adm(m), Adm0, pksan)
m1

Fix := (Fix1
Adm(m), Adm1, pksan)

if Verify(m0, ‡0, pksig, pksan) = 0 or Verify(m1, ‡1, pksig, pksan) = 0
or Adm0(Mod0) = 0 or Adm1(Mod1) = 0
or Mod0(m0) ”= Mod1(m1)
output ‹

if ‡0
Fix ”= ‡1

Fix

if (m0
Fix, ‡0

Fix) /œ L‡

abort and output (m0
Fix, ‡0

Fix)
else
abort and output (m1

Fix, ‡1
Fix)

(mÕ, ‡Õ) Ω Sanit(mb, Modb, ‡b, pksig, sksan)
output (mÕ, ‡Õ)

Fig. 8. Description of reduction B9, reducing the occurence of event query in the unlinkability experiment of SanS
against the s-EUF security of À.
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x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), pkÕ, pksan, pk)

Prover (x, i, Ê, fl) Verifier (x)

(Ti, zi, si) Ω SÀ(1Ÿ)
u1≠i, u2 Ω Zq

T1≠i := g
u1≠i
1

T2 := gu2
1 T3 := gu2

2
T4 := (cd–)u2 T5 := hu2 T0, T1, T2, T3, T4, T5

z Ω Zq

z1≠i := z ≠ zi z
s1≠i := fl · z1≠i + u1≠i

s2 := Ê · z + u2 s0, s1, s2, z0
z1 := z ≠ z0

gs0
1

?= T0 · ( pk
Õ

pk
)z0

gs1
1

?= T1 · ( pk
Õ

pksan
)z1

gs2
1

?= T2 · cz
1

gs2
2

?= T3 · cz
2

(cd–)s2 ?= T4 · cz
4

hs2

g
s0+s1
1

?= T5
T0T1

· ( c3
pkÕ )z

Fig. 9. À-Protocol for Encryption of Public Key

Definition 21 (Cramer Shoup Encryption Scheme). Let G be a cyclic group of prime order q with

two random generators g1, g2 and let H : {0, 1}ú æ Zq be a hash function. The Cramer Shoup encryption

scheme, working over G, is defined as follows:

EGen(1Ÿ): The key generation algorithm proceeds as follows: Pick x, y, a, b, aÕ, bÕ Ω Zq uniformly at random,

compute h := gx
1 gy

2 , h := ga
1 gb

2, h := gaÕ

1 gbÕ

2 , set dk := (x, y, a, b, aÕ, bÕ) and ek := (h, c, d) and output

(dk, ek).
Enc(ek, m): The encryption algorithm proceeds as follows: Parse ek as (h, c, d) and choose r Ω Zq uniformly

at random. Compute – := H(gr
1, gr

2, hr · m) and C := (gr
1, gr

2, hr · m, (cd–)r). Output C.

Dec(dk, C): The decryption algorithm proceeds as follows: Parse dk as (x, y, a, b, aÕ, bÕ) and C as (u, v, w, e).
Compute – := H(u, v, w) and check if ua+–aÕ · vb+abÕ = e holds. If it holds output w/(ux · vy). Otherwise

output ‹.

The remaining building blocks for our construction are two non-interactive zero-knowledge proof systems
that we instantiate with specific Fiat-Shamir transformed [FS87] À-protocols. The first proof system is for
the language L1 and the statement that we want to prove in our concrete instantiation looks as follows:

x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), pk
Õ, pksan, pk)

PoK

I
(Ê, fl) :

gÊ
1 = c1 · gÊ

2 = c2 · (cd–)Ê = c4

· hÊ

gfl = c3
pkÕ ·

1
gfl

1 = pk
Õ

pk
‚ gfl

1 = pk
Õ

pksan

2
J

.

Note that the statement that we are proving can be expressed as a logical combination of discrete
logarithm proofs of knowledge. For the design of each single discrete logarithm proofs we deploy Schnorr’s À-
protocols from [Sch90]. We then formulate the complete proof using standard parallel composition techniques,
first introduced in [CP93,CDS94]. The complete protocol is depicted in Figure 9. It is worth mentioning that,
in order to express the logical disjunction of our statement, the prover must run the simulator S provided
by the zero-knowledge property (Definition 19). For the specific case of À-protocols SÀ works by randomly
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sampling zi, si from Zq and computing Ti as gsi
1 /( pk

Õ

pk
)zi (or gsi

1 /( pk
Õ

pksan
)zi , respectively). Finally, as mentioned

above, the protocol can be made non-interactive by using the Fiat-Shamir transformation. Note that this
allow us to drop the first tuple of elements (T0, . . . , T5) since they can be simply recomputed from the public
parameters and the further messages of the protocol and their integrity can be checked by recomputing the
hash function.

In the following, we show how to instantiate the proof of knowledge for the language L2. We prove the
following statement:

x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), p̂k)

ZK

;
(‰, Â) : g‰

1 gÂ
2 = h · c‰

1 cÂ
2 = c3

p̂k

<
.

Again, for the concrete instantiation in Figure 10 we deploy parallel composition of À-protocols made
non-interactive via the Fiat-Shamir transformation. Combining these building blocks yields a highly e�cient
sanitizable signature scheme.

x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), p̂k)

Prover (x, ‰, Â) Verifier (x)

u0, u1 Ω Zq

T := gu0
1 gu1

2 T
z Ω Zq

s0 := ‰ · z + u0 z
s1 := Â · z + u1 s0, s1

gs0
1 gs1

2
?= T · hz

cs0
1 cs1

2
?= T · ( c3

p̂k
)z

Fig. 10. À-Protocol for Proof of Decryption

6 Conclusion

In this paper, we formalized the novel notion of signature schemes that are unforgeable under re-randomized
keys. Furthermore, we showed that Schnorr’s signature scheme [Sch90, Sch91] is unforgeable under re-
randomized keys in the random oracle model and that Hofheinz’ and Kiltz’ signature scheme [HK08,HK12]
is unforgeable under re-randomized keys in the standard model.

Based on signature schemes with re-randomizable keys we then gave a construction of unlinkable sani-
tizable signatures and an instantiation, which is at least one order of magnitude faster than all previously
known schemes.

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF) through
funding for the Center for IT-Security, Privacy and Accountability (CISPA – www.cispa-security.org)
and the project PROMISE. Moreover, it was supported by the Initiative for Excellence of the German
federal and state governments through funding for the Saarbrücken Graduate School of Computer Science
and the DFG MMCI Cluster of Excellence. Part of this work was also supported by the German research
foundation (DFG) through funding for the collaborative research center 1223. Dominique Schröder was also
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PS14. Henrich Christopher Pöhls and Kai Samelin. On updatable redactable signatures. In Ioana Boureanu,
Philippe Owesarski, and Serge Vaudenay, editors, ACNS 14: 12th International Conference on Applied

Cryptography and Network Security, volume 8479 of Lecture Notes in Computer Science, pages 457–475,
Lausanne, Switzerland, June 10–13, 2014. Springer, Heidelberg, Germany.

SBZ02. Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In Kwangjo Kim, editor,
ICISC 01: 4th International Conference on Information Security and Cryptology, volume 2288 of Lecture

Notes in Computer Science, pages 285–304, Seoul, Korea, December 6–7, 2002. Springer, Heidelberg,
Germany.

Sch90. Claus-Peter Schnorr. E�cient identification and signatures for smart cards. In Gilles Brassard, editor,
Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 239–252,
Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

Sch91. Claus-Peter Schnorr. E�cient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
1991.

32


	Efficient Unlinkable Sanitizable Signatures from Signatures with Re-Randomizable Keys

