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Abstract. A seminal result in cryptography is that signature schemes
can be constructed (in a black-box fashion) from any one-way function.
The minimal assumptions needed to construct blind signature schemes,
however, have remained unclear. Here, we rule out black-box construc-
tions of blind signature schemes from one-way functions. In fact, we rule
out constructions even from a random permutation oracle, and our re-
sults hold even for blind signature schemes for 1-bit messages that achieve
security only against honest-but-curious behavior.

1 Introduction

Blind signature schemes, introduced by Chaum [10], allow a signer to interac-
tively issue signatures for a user in such a way that, roughly, the signer learns
nothing about the message being signed (blindness) while the user cannot com-
pute any additional signatures without the help of the signer (unforgeability).
Classical applications of blind signatures include e-cash, where a bank blindly
signs coins withdrawn by users, and e-voting, where an authority blindly signs
public keys that voters later use to cast their votes.

Several constructions of blind signature schemes are known in either the ran-
dom oracle model [23, 1, 6, 7, 3] or the standard model [19, 8, 22, 12, 15, 16, 20, 13,
2]. The minimal assumptions needed to construct blind signatures, however, are
unclear. On the positive side, there exist constructions of blind signatures based
on (doubly) enhanced trapdoor permutations [19, 12, 16]. Interestingly, these
constructions are all nonblack-box even in the honest-but-curious setting, rely-
ing as they do on either generic secure two-party computation or non-interactive
zero-knowledge proofs. (More recently, protocols for secure two-party computa-
tion making only black-box use of enhanced trapdoor permutations have been
shown [18]; these could be used in conjunction with [16] to give a black-box con-
struction of blind signatures from certified enhanced trapdoor permutations.)
On the other hand, for standard signatures we know that one-way functions
suffice [21, 25], and there is no reason a priori to believe that blind signatures
cannot be constructed from one-way functions also.
? This work was done while visiting the University of Maryland.



Previous work of Camenisch, Neven, and Shelat [9] (see also [13]) shows
that any unique blind signature scheme implies oblivious transfer. Combined
with known results showing that oblivious transfer cannot be constructed in
a black-box fashion from one-way permutations, this at first may appear to
rule out black-box constructions of blind signatures from one-way permutations.
The uniqueness requirement, however, is quite strong: Fiore and Schröder show
that unique signatures (even without the blindness requirement) cannot be con-
structed in a black-box fashion even from trapdoor permutations [11]. More
importantly, uniqueness is not a standard desideratum for blind signatures and
the result of Camenisch et al. implies nothing for blind signatures without the
uniqueness property. In another line of work, Fischlin and Schröder [14] show
that three-round blind signature schemes with signature-derivation checks can-
not be constructed in a black-box way from any non-interactive problem. Their
result, however, says nothing about protocols with more rounds, or for schemes
that do not have signature-derivation checks. We refer to the reader to [26] for
a comprehensive survey of the above results.

As our main result, we show:

Theorem 1 (Main theorem). There is no black-box construction of blind sig-
nature schemes from one-way functions.

Our result imposes no restrictions on the blind signature scheme, and applies
even to schemes with imperfect completeness. Our result is actually more general
than the above theorem indicates; it also applies to constructions based on one-
way permutations or random oracles, and even rules out constructions of blind
signature schemes for 1-bit messages that achieve security only against honest-
but-curious behavior.

The proof of our impossibility result requires a careful combination of prior
techniques in the area of black-box separations. At a high level, our basic frame-
work is similar to the one used by Barak and Mahmoody-Ghidary in study-
ing black-box constructions of (standard) signature schemes from one-way func-
tions [4]. Our setting introduces several additional difficulties, however, not least
of which is that we must deal with the case of interactive protocols. Also, Barak
and Mahmoody-Ghidary prove limits on the efficiency of constructions, whereas
we are interested in proving impossibility. To deal with these complications, we
also rely on techniques used in analyzing constructions of key-agreement pro-
tocols from one-way functions [17, 5]. A more detailed overview of our proof is
given in Section 2.

Black-box separations. In cryptography, constructions are usually proven se-
cure by reduction to the security of some “low-level” primitive. Most known
constructions are black-box, in that they treat the underlying primitive as an or-
acle and do not use any internal structure of the primitive; see [24] for extensive
discussion and formal definitions. Impagliazzo and Rudich [17] initiated work
showing impossibility of black-box constructions; in their paper they showed im-
possibility of constructing key-exchange protocols in a black-box manner from
one-way functions. It is important to bear in mind that several nonblack-box



constructions are known; nevertheless, black-box impossibility are useful insofar
as they rule out a particular approach to a problem. Nonblack-box constructions
also tend to be orders of magnitude less efficient than black-box constructions.

Organization. We provide on overview of our proof in Section 2. In Section 3 we
present definitions of blind signatures, and we prove our main result in Section 4.
In Section 5 we discuss extensions of our result to handle schemes with imperfect
completeness, and to rule out constructions from one-way permutations.

2 Overview of Our Techniques

We consider interactive signature-issue protocols between a signer and a user.
The input of the signer is a private key sk, and the user’s input is a public key
pk and a message m; at the end of this protocol the user outputs a signature
σ on the message m. The algorithms run by both the signer and the user are
given black-box access to a one-way function (OWF); we allow the parties to
be computationally unbounded, but require that they only query the one-way
function a polynomial number of times. For our impossibility result, we assume
that both parties follow the protocol and are just honest-but-curious (i.e., semi-
honest). This assumption only strengthens our result.

In the setting of blind signatures, security demands that:

Unforgeability The user should not be able to output two valid signatures
after interacting with the signer once. (More generally, the user should be
unable to output k+1 valid signatures on distinct messages after interacting
with the signer k times.)

Blindness If the user executes the signature-issue protocol twice, once using a
message m0 and once using a message m1, then the signer should be unable
to tell in which order these executions were run. This should hold even if the
signer is given both of the resulting signatures.

We show that if we wish to satisfy both conditions above then OWFs are not
sufficient. To illustrate the main idea why this is true, consider the setting where
both the user and signer are given access to a random oracle. Let Q denote the
oracle queries made by the signer in generating its public and private keys. Now
consider two protocol executions in which the user first obtains a signature on
the message m0 and then obtains a signature on the message m1. Correctness
intuitively requires that in each interaction the user learns sufficiently many of
the queries in Q in order to be abe to derive a valid signature. Unforgeability
requires that the user does not learn “too many” of the queries in Q in each
interaction; in particular, the user should not learn enough queries in the first
interaction to derive a valid signature on m1. Finally, blindness implies that,
from the point of view of the signer, the queries the user learns in the first
interaction should be distributed identically to the queries the user learns in the
second interaction. We show that all these requirements are in conflict.



More formally, we rely on results of [17, 5] showing that for any two-party
protocol there is an algorithm Find that takes as input a transcript of an execu-
tion of the protocol and outputs, with high probability, a set that contains every
oracle query that was asked by both parties (“intersection queries”). Noting that
the signer can run this algorithm, the blindness requirement thus implies that
the set obtained by running Find on the signature-issue protocol for m0 must
contain a set of intersection queries that are sufficient to derive a signature on
the message m1. (Else the signer knows that the first execution could not possi-
bly have been for m1.) We use this to construct a forger, which is a more efficient
version of the one given in [4]. Our forger runs a single protocol execution hon-
estly to obtain a signature on m0, and then runs Find to learn all the intersection
queries. By what we have just said, this set will contain enough information to
allow the forger to also compute a valid signature on m1.

From a technical point of view, our proof technique can be viewed as following
the general framework proposed by Barak and Mahmoody-Ghidary [4], who show
a forger for any (standard) signature scheme constructed from one-way functions
in a black-box fashion. Our work differs from theirs in the following respects:

– The obvious difference is that we consider an interactive signing protocol,
whereas in [4] the signing algorithm was non-interactive. Moreover, Barak
and Mahmoody-Ghidary assume that signing is deterministic. This assump-
tion is without loss of generality for standard signatures, but is more subtle
in the case of blind signatures.

– While we use the same “usefulness” property as in [4], our proof that use-
fulness holds is very different from the analogous proof in their work: they
assume a large message and argue that usefulness occurs for some pair of
messages with high probability, whereas in our case we rely on blindness and
show (roughly) that usefulness holds for any two messages with all but neg-
ligible probability. This allows us to simplify the attack and obtain a forger
that makes only polynomially many oracle queries regardless of how many
oracle queries the construction uses. (In the work of Barak and Mahmoody-
Ghidary the number of queries made by the forger depends exponentially on
the number of queries made by the construction.)

3 Definitions

3.1 Blind Signatures

The notation AO(x) refers to an algorithm A that on input x gets black-box ac-
cess to an oracle O. By (a, b) ← 〈X (x),Y(y)〉 we denote interactive execution of
algorithms X and Y, where x (resp., y) is the private input of X (resp., Y), and a
(resp., b) is the private output of X (resp., Y). We write Y〈X (x),·〉(y) if Y can in-
voke a single execution of the protocol with X . Accordingly, X 〈·,Y(y0)〉,〈·,Y(y1)〉(x)
denotes that X can invoke one execution each with Y(y0) and Y(y1).

We define blind signatures for 1-bit messages; since we are proving impossi-
bility, this only makes our results stronger.



Definition 1 (Oracle blind signature scheme). An oracle blind signature
scheme is a tuple of polynomial-time algorithms BS = (Gen(·), S(·), U (·), Vrfy(·)),
where for any λ ∈ N and any oracle O : {0, 1}λ → {0, 1}λ we have:

– GenO(1λ) generates a key pair (sk, pk).
– The joint execution of SO(sk) and UO(pk,m), where m ∈ {0, 1}, generates

an output σ for the user and no output for the signer. We write this as
(⊥, σ) ← 〈SO(sk),UO(pk,m)

〉
.

– Algorithm VrfyO(pk,m, σ) outputs a bit b.

We assume1 perfect completeness: i.e., for any λ ∈ N and O : {0, 1}λ → {0, 1}λ,
any (sk, pk) ← GenO(1λ), any m ∈ {0, 1}, and any signature σ output by UO in
the joint execution of SO(sk) and UO(pk,m), it holds that VrfyO(pk,m, σ) = 1.

3.2 Security of Blind Signatures

Blind signatures must satisfy two properties: unforgeability and blindness. For
unforgeability we require that a user who runs a single execution of the signature-
issuing protocol should be unable to forge a valid signature on two messages.
For blindness we require that in two executions of the protocol, in which the
user obtains signatures on both possible messages, the signer should be unable
to determine which message was signed in which execution. In both cases, we
assume semi-honest behavior. Our definitions of security are weaker than those
usually considered; since we show impossibility, this only strengthens our results.

In the definitions that follow we consider an execution of an oracle blind
signature scheme BS relative to a random oracle O. Since a random oracle is
one-way with overwhelming probability, any construction of blind signatures
from one-way functions must give an oracle blind signature scheme satisfying
these definitions. We remark that our definitions consider unbounded adversaries
who make polynomially many queries to O; however, we could have stated our
definitions in terms of polynomial-time adversaries given access to an NP oracle.

Definition 2 (Unforgeability). Oracle blind signature scheme BS = (Gen,
S,U , Vrfy) is unforgeable if for any semi-honest algorithm U∗ that makes at most
poly(λ) queries to O, the probability that experiment ForgeBS

U∗(λ) evaluates to 1
is negligible (in λ), where

Experiment ForgeBS
U∗(λ):

Oracle O : {0, 1}λ → {0, 1}λ is chosen at random
(sk, pk) ← GenO(1λ)
(σ0, σ1) ← U∗〈S(sk),·〉,O(pk) (where U∗ runs an honest execution

of U(pk, 0) with S and then outputs signatures of its choice)
Return 1 iff VrfyO(pk, 0, σ0) = 1 and VrfyO(pk, 1, σ1) = 1.

1 We relax this requirement in Section 5.1.



Definition 3 (Blindness). Oracle blind signature scheme BS = (Gen,S,U ,
Vrfy) satisfies blindness if for any semi-honest algorithm S∗ that makes at most
poly(λ) queries to O, the probability that experiment UnblindBS

S∗(λ) evaluates to 1
is negligibly close to 1/2, where

Experiment UnblindBS
S∗(λ)

Oracle O : {0, 1}λ → {0, 1}λ is chosen at random
r ← {0, 1}λ; b ← {0, 1}
(sk, pk) ← GenO(1λ; r)
st ← S∗〈·,U(pk,b)〉,〈·,U(pk,b̄)〉,O(sk, pk, r) (where S∗ runs

an honest execution of the protocol with each instance of U)
Let σb, σ1−b denote the local outputs of each instance of U
b′ ← S∗O(st, σ0, σ1)
Return 1 iff b = b′.

Throughout this work we make the simplifying assumption that the sign-
ing algorithm S is deterministic. This is without loss of generality when we
consider the above definitions of security, as a blind signature scheme with ran-
domized signer S can always be converted to a scheme with deterministic signer
S ′ by (1) including a key for a pairwise-independent hash function as part of the
signer’s private key; (2) having the user send a random nonce as its first message
in the signing protocol; and then (3) having S ′ apply the hash function to the
user’s first message to generate random coins that it then uses to run S.

4 Attacking Black-Box Constructions of Blind Signatures

In this section we show that there is no black-box construction of blind signatures
from one-way functions. To this end, we show that any oracle blind signature
scheme BS(·) fails to satisfy either blindness or unforgeability when instantiated
with a random oracle O : {0, 1}λ → {0, 1}λ.

4.1 Preliminaries

We begin by reviewing a lemma from previous work [17, 5] that we utilize in our
proof. Informally, it states that for any two-party protocol Π where each party
has access to a random oracle there exists an algorithm that, upon observing
the transcript of an interaction, finds with high probability all the intersection
queries (queries to the oracle that have been asked by both parties).

Lemma 1 ([5]). Let Π be a two-party (randomized) protocol where each party
asks at most q queries to an oracle. Then for every δ ∈ (0, 1), there is an algo-
rithm Findδ that makes O((q/δ)2) oracle queries, such that when Findδ is given
the transcript of an execution of the protocol between the parties in the presence
of a random oracle, the queries made by Findδ contain all the intersection queries
of the two parties with probability at least 1 − δ. (The probability is taken over
the coins of Findδ and the parties, as well as choice of the random oracle.)



We apply this in our setting in the following way. Corresponding to any oracle
blind signature scheme BS(·), define the following two-party protocol Π between
a signer S and a user U :

1. S runs (sk, pk) ← GenO(1λ) and sends pk to U .
2. U and S then run the signature-issuing protocol on the message 1, at the

end of which U obtains a signature σ1.
3. U runs VrfyO(pk, 1, σ1).

For the remainder of Section 4, fix some δ and define Findδ (as per Lemma 1)
relative to the above protocol Π. Say the above protocol is run in the presence
of a random oracle O. If we let Q(SΠ) and Q(UΠ) denote the O-queries made by
each party during an execution of the above protocol that resulted in transcript
trans, then Lemma 1 guarantees that, with high probability,

Q(SΠ) ∩Q(UΠ) ⊆ FindOδ (trans).

4.2 From Blindness to Usefulness

In this section we study the question of what blindness implies with regard
to the set of queries I output by the Find algorithm. The main observation
is that due to blindness the set I (that contains all intersection queries with
high probability) must be somehow “independent” of the actual message being
signed. Recall that in the blindness game the semi-honest signer interacts with
two honest user instances in a random order. The task for the attacker is to guess
which instance used which message. Now, consider two protocol executions and
suppose that the set of intersection queries depended on the message being used.
Then just by looking at those queries it would be possible to determine the order
of the messages.

To formalize this intuition, we first define some notation. Consider an exe-
cution of the blindness experiment. We write Q(Gen) to represent the set of O-
queries made during key generation. In the interaction between S and U(pk, 0),
let Q(S0) denote the O-queries made by S; let trans0 denote the resulting tran-
script; let σ0 be the signature that U outputs; and let Q(Vrfy0) be the set of O-
queries made by the verification algorithm VrfyO(pk, 0, σ0). Define Q(S1), trans1,
and Q(Vrfy1) analogously for the interaction between S and U(pk, 1). (Note that
by perfect completeness and the assumption of semi-honest behavior by S, both
user instances always obtain a valid signature on their message.)

Consider a (semi-honest) signer S∗ in the blindness game. Say the adversary
runs Find using trans1. It follows from Lemma 1 and the definition of Π in the
previous section that, with high probability,

Q(Vrfy1) ∩ (Q(Gen) ∪Q(S1)) ⊆ Find(trans1). (1)

S∗ can check whether Equation (1) holds by computing VrfyO(pk, 1, σ1) itself.
But then blindness implies that Equation (1) must hold with high probability
even when Find is run on the “wrong” interaction; i.e.,

Q(Vrfy1) ∩ (Q(Gen) ∪Q(S0)) ⊆ Find(trans0).



In the language of [4], this means that the message ‘0’ is “useful” for the mes-
sage ‘1’ with high probability.

We now give the formal proof.

Lemma 2. Let BS be an oracle blind signature scheme satisfying blindness.
Consider an execution of the blindness experiment (cf. Definition 3), and let
Q(Gen), Q(Sb), transb, and Q(Vrfyb) be as defined above. Then with probability
at least 1− δ − negl(λ) over the random coins of the experiment it holds that

Q(Vrfy1) ∩ (Q(Gen) ∪Q(S0)) ⊆ Findδ(trans0).

Proof. We first observe that with probability at least 1− δ we have

Q(Vrfy1) ∩ (Q(Gen) ∪Q(S1)) ⊆ Findδ(trans1).

This follows immediately from Lemma 1 and our definition of protocol Π in the
previous section.

Consider now the following adversary S∗:
1. S∗ runs the honest key-generation algorithm to obtain (sk, pk). It records

the O-queries Q(Gen) made during this step.
2. S∗ then runs the honest signing protocol with the first user instance. Let

trans denote the transcript of this execution, and let Q(S) denote the O-
queries made during this step.

3. S∗ then runs the honest signing protocol with the second user instance.
4. S∗ is given signatures σ0, σ1 on the messages 0 and 1, respectively. (By

perfect completeness, both user instances always obtain valid signatures.)
S∗ verifies σ1 and records the O-queries Q(Vrfy1) made in doing so.

5. Finally, S∗ outputs 1 iff Q(Vrfy1) ∩ (Q(Gen) ∪Q(S)) ⊆ Findδ(trans).

If b = 1, and so the first user instance represents an interaction with U(pk, 1),
then trans = trans1 and Q(S) = Q(S1) and so S∗ outputs 1 with probability at
least 1−δ. The blindness property thus implies that S∗ outputs 1 with probability
at least 1 − δ − negl(λ) when b = 0 (and the first user instance represents an
interaction with U(pk, 0)). This concludes the proof.

4.3 Forging a Signature

Before presenting our forger, we begin by discussing the ideas behind our attack.
The main observation is that due to the blindness of the signature scheme the
intersection queries between the signer and user are somehow “independent” of
the message. This was formalized in Lemma 2, where we showed that (with high
probability)

Q(Vrfy1) ∩ (Q(Gen) ∪Q(S0)) ⊆ Find(trans0).

Intuitively, this means that all the “important” queries needed to verify a sig-
nature on the message ‘1’ must already be contained in the set of queries that
are found when signing and verifying the message ‘0’. Thus, in the language of



Barak and Mahmoody-Ghidary [4], we have shown that 0 is “useful” for 1 with
high probability. As in that paper, we use this property to show an attack.

The above condition seems to suggest that the set of intersection queries
for ‘0’ is sufficient to generate a signature on ‘1’. However, this is not quite
true. The problem is that there may be queries that the user makes with high
probability when generating and verifying a signature for 1 that are not in the
set Find(trans0); this could cause technical problems because our forger must get
the answers to these queries right when constructing a forged signature. For a
concrete example, consider a blind signature scheme where the user, on input
a message b, always queries y = O(b) and includes y as part of the signature;
verification checks whether O(b) = y (among other things). In such a case the
query O(1) may not be in the set Find(trans0).

As in [4], we handle this issue by introducing a phase in which the forger
makes any “heavy” queries that are made by the user with high probability. If
the forger knows the correct answers to all these high-probability queries then
it is very unlikely that it will incorrectly answer some query asked during the
verification of the forged signature.

Given this intuition we now present the details of the attack. The main
structure of the attack is based on [4] with necessary changes to adapt the proof
to our setting. In particular, our attack makes only polynomially many oracle
queries (regardless of the number of queries the scheme itself makes).

Theorem 2. Let BS be an oracle blind signature scheme satisfying blindness.
Then there exists an adversary U∗ for which ForgeBSO

U∗ (λ) (cf. Definition 2) is
not negligible.

Proof. Consider the following adversary U∗:
Setup. The input of U∗ is a public key pk.
Step 1: Requesting a signature. U∗ runs the honest signing protocol (using

message ‘0’) with the signer, eventually obtaining a valid signature σ0. Let
trans0 be the transcript (i.e., the messages exchanged) for this execution. U∗
verifies the received signature and records the oracle queries Q(Vrfy0) made.
U∗ then computes Findδ(trans0) with δ = 1/10.
Denote by T0 the complete transcript of the entire experiment run so far;
i.e., T0 contains the entire views of both the signer and U∗. Note that U∗
has only partial knowledge about T0.

Step 2: Learning query/answer pairs. Let L0 be the information that U∗
has about T0 and the oracle O following Step 1. Let q be an upper bound
on the total number of queries asked when running each of the algorithms
in BS once. Let ε = δ/q and M = q/εδ = 100q2. For i = 1, . . . , M do the
following:
1. Let Di−1 be the distribution of T0, the transcript of the first step, con-

ditioned on Li−1.
2. Denote by Q(Li−1) the oracle queries that appear in Li−1. If a query

x ∈ {0, 1}λ\Q(Li−1) appears with probability at least ε in Di−1, then



U∗ queries O(x) and adds the query/answer pair to Li−1 to obtain Li.
(If there is more than one such x, then U∗ adds the lexicographically
first one.)

Step 3: Sampling a possible transcript. U∗ samples a random transcript
T̃0 according to the distribution DM . Observe that T̃0 also defines a secret
key s̃k that may be distinct from the real secret key sk. Moreover, T̃0 may
include some new mappings that were not defined in LM . We let Õ be the
following oracle: If a query x appears in T̃0 then Õ(x) returns the value
contained in T̃0; otherwise, Õ(x) = O(x).

Step 4: Forging. U∗ runs the interactive signing protocol for the message ‘1’
locally, playing the role of both the signer and the user, using s̃k and Õ; that
is, it computes σ1 ←

〈
SÕ(s̃k),U Õ(pk, 1)

〉
. For technical reasons, we also

have U∗ verify σ1 (using O). Finally, U∗ outputs the two signatures σ0, σ1.

Analysis. It is easy to see that U∗ makes polynomially many queries to O. Since
U∗ runs the honest user protocol in its execution with the signer (in step 1), σ0

is always a valid signature on ‘0’. In the remainder of the proof, we show that σ1

is a valid signature on the message ‘1’ with probability at least 4/5−δ−negl(λ).
In the following we show that, with high probability, verification of σ1 never

asks a query on which oracles Õ and O disagree. Assuming this to be the case, it
follows (by the perfect completeness of the signature scheme) that σ1 is a valid
signature on ‘1’ with respect to the true oracle O.

Lemma 3. Let Q(Vrfy1) denote the set of oracle queries made when U∗ ver-
ifies the signature σ1. Let Q̃(Gen) and Q̃(S0) denote the set of oracle queries
made by the key-generation and signing algorithms, respectively, in the sampled
transcript T̃0. Then with probability at least 4

5 − δ − negl(λ) it holds that

Q(Vrfy1) ∩
(
Q̃(Gen) ∪ Q̃(S0)

)
⊆ Findδ(trans0).

Lemma 3 implies Theorem 2. To see this, note that VrfyÕ(pk, 1, σ1) = 1 by
perfect completeness of the signature scheme. But the only queries on which
Õ and O can possibly differ are queries in

(
Q̃(Gen) ∪ Q̃(S0)

)
\ Findδ(trans0). If

verification makes no such queries, then

VrfyO(pk, 1, σ1) = VrfyÕ(pk, 1, σ1) = 1.

Let E denote the event considered in Lemma 3. The proof of Lemma 3 follows
the proof in [4]: we define a sequence of hybrid distributions, and analyze the
probability of E in each of them. The biggest difference between the proof in [4]
and the proof here is when we analyze the probability that E happens in the
final hybrid distribution.

Definition of hybrid distributions. We define four hybrid distributions H0,
H1, H2, and H3 as follows:



H0. The first hybrid is the distribution (T̃0, T1), where T̃0 is the transcript sam-
pled by U∗ in Step 3, and T1 is the transcript of Step 4 (i.e., generation and
verification of σ1). Note that T̃0 includes the queries of the key-generation
algorithm.

H1. The second hybrid is defined identically to H0, except that we use Õ to
verify σ1. (In H0, oracle O was used when verifying σ1.)

H2. The third hybrid has the same distribution as H1, except that we change
the definition of Õ as follows. Recall that LM is the set of O query/answer
pairs that U∗ knows after the learning queries step (Step 2). We define Õ
to answer any query contained in LM with the answer stored there and all
other queries with a randomly chosen value. This modification results in an
oracle Õ that agrees with O on all the queries U∗ has queried to O until the
end of Step 2; all other queries are answered completely at random.

H3. The distribution of the last hybrid is the same as H2 except that T̃0

is replaced with T0. Thus the output of this hybrid is (T0, T1) which de-
scribes the experiment where we first compute (sk, pk) ← Gen; then run
σ0 ←

〈SO(sk),UO(pk, 0)
〉

and σ1 ←
〈SO(sk),UO(pk, 1)

〉
; and finally verify

both signatures. Note that all algorithms here use the “real” oracle O and
thus verification succeeds for both signatures.

The distributions considered in each hybrid are taken over random choice of the
oracle and random coins of the key-generation algorithm, the signer, and the
adversary. We prove Lemma 3 by showing that (1) event E occurs with high
probability in H3 and (2) the probability that event E occurs in H0 is not much
smaller than its probability in H3.

We first show that E occurs with high probability in H3. The following is an
immediate consequence of Lemma 2.

Claim. PrH3 [E] ≥ 1− δ − negl(λ).

We next show that the probability of E remains unchanged when we move
from H3 to H2.

Claim. H2 ≡ H3. Thus, PrH2 [E] = PrH3 [E].

Proof. The proof here is the same as in [4]. We can view H3 as being sampled as
follows: first, fix LM ; then choose the transcript T0 at random from DM . This,
however, is exactly the same distribution as H2 where LM is fixed and we then
choose T̃0 from DM .

For the next claim, we need the following definition.

Definition 4 (Statistical distance). If X,Y are two random variables taking
values in a finite set A, then SD(X,Y ) = 1/2 ·∑a∈A |Pr[X = a]− Pr[Y = a]| .

We now show that H1 and H2 are “close”.

Claim. SD(H1,H2) ≤ 1
5 . Thus, PrH1 [E] ≥ PrH2 [E]− 1

5 .



Proof. Let Q(T0) be the queries contained in the transcript T0. Let B be the
event that U∗ ever asks a query in Q(T0) \Q(LM ). It is clear that H1 = H2 as
long as event B does not occur in either of them, since in both distributions any
queries outside of Q(T0) are answered randomly. This implies that PrH1 [B] =
PrH2 [B], and SD(H1,H2) ≤ PrH2 [B]. We now show that PrH2 [B] ≤ 1

5 . (In the
following, all probabilities are in H2.)

Recall that in Step 2 of the attack, we set ε = δ/q and U∗ learns at most
M = 100q2 query/answer pairs from O. Let Di be the distribution of T0 sampled
in this step by U∗ given the set Li of known query/answer pairs. Let C be the
event that there are more than M queries that become likely during the attack.
That is, C is the event that there exists a query x /∈ Q(LM ) such that x is asked
in DM with probability at least ε. Below, we show that Pr [C] ≤ δ = 1

10 and
Pr[B | ¬C] ≤ δ = 1

10 . This completes the proof, since then

Pr [B] = Pr [C] · Pr[B | C] + Pr [¬C] · Pr[B | ¬C]

≤ Pr [C] + Pr[B | ¬C] ≤ 2δ =
1
5

.

The following two claims complete the proof that H1 and H2 are close.

Claim. Let C be the event defined in the proof of the previous claim. Then
PrH2 [C] ≤ δ.

Proof. All probabilities here are in H2. Consider an arbitrary query x and let
hitx be the event that x is queried to O by the signer and then by the user
when generating the signature on ‘0’. Let qx = Pr[hitx]. Finally, let Ax(i) be the
event that x is asked in the ith iteration of Step 2; let px(i) = Pr[Ax(i)]; and let
px = Pr[∪iAx(i)]. Note that

∑
x qx ≤ q since q is an upper bound on the total

number of queries asked when running each algorithm of the blind signature
scheme. Furthermore, qx ≥ εpx because

qx = Pr [hitx] ≥
∑

i

Pr[hitx | Ax(i)] · Pr [Ax(i)] ,

and U∗ adds a query to its list only if the probability that this query is asked is
at least ε. Thus, Pr[hitx | Ax(i)] ≥ ε and so qx ≥ ε

∑
i Pr [Ax(i)] = εpx.

Assume for the sake of contradiction that Pr [C] > δ. Since C is the event
that M queries are learned in Step 2, this implies that the expected number of
queries asked,

∑
x px, is larger than δM . But this would imply

δM <
∑

x

px ≤
∑

x

qx/ε ≤ q/ε,

contradicting the fact that M = q/δε.

Claim. Let B and C be as defined earlier. Then PrH2 [B | ¬C] ≤ δ.



Proof. Recall that in Step 4 U∗ relies only on the mappings stored in LM , and
all queries from Q(T0)\Q(LM ) are answered at random. But then H2 is inde-
pendent of T0 conditioned on LM (whereas LM has the distribution DM ). This
means that we can imagine defining H2 by choosing LM first, then running U∗
(using LM ) to sample H2, and then choosing T0 conditioned on LM and H2. Re-
call that event C is determined by LM , and assume that LM is such that event
¬C occurs. This implies that every query asked by U∗ that is not in Q(LM )
must appear in DM with probability less than ε. Since U∗ asks at most q queries
in Step 4, the probability that Q(T0)\Q(LM ) contains one of these queries is at
most εq = δ.

Finally, we show that E occurs with the same probability in H0 and H1.

Claim. PrH0 [E] = PrH1 [E].

Proof. This claim follows easily if both hybrid distributions H0 and H1 use the
same oracle O and if they are sampled using the same random coins for key
generation and the adversary (note that the randomness of the adversary fully
determines the randomness used to run the honest user algorithm during the
signature-issue protocol). But then it follows that event E occurs in H0 if and
only if it also occurs in H1.

This completes the proof of Lemma 3, and thus the proof of Theorem 2.

5 Extensions

In this section we briefly discuss how to extend our impossibility result to the case
of blind signature schemes with imperfect completeness, and to constructions
from one-way permutations.

5.1 Imperfect Completeness

Let BS(·) be an oracle blind signature scheme for which correctness holds with
all but negligible probability; i.e., for any O and any m ∈ {0, 1}, we have

Pr
[

(sk, pk) ← GenO(1λ);
(⊥, σ) ← 〈SO(sk),UO(pk, m)

〉 : VrfyO(pk,m, σ) = 1
]
≥ 1− negl(λ).

Our results from the previous section can be easily extended to such schemes.
The proof of Lemma 2 is largely identical, with the only modification being to
explicitly consider what happens if either of the signatures computed by the two
user instances are invalid.

The forgery attack also proceeds just as in the previous section. Since the
probability that one of the signatures is invalid is negligible, this only affects the
forgery probability by a negligible amount.



5.2 One-Way Permutations

We now discuss how to extend our impossibility result to also rule out construc-
tions from one-way permutations. As noted in [5], the Find algorithm can be
modified to work in the random permutation model with a polynomial blow-up
in the number of queries. It follows that an analogue of Lemma 2 holds when
O is chosen as a random permutation. (Again, a random permutation oracle is
one-way with all but negligible probability.) For the forgery attack we modify
the proof of Theorem 2 as in [4]. We omit the details here.
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