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Abstract. We investigate the possibility to prove security of the well-known blind signature schemes
by Chaum, and by Pointcheval and Stern in the standard model, i.e., without random oracles.
We subsume these schemes under a more general class of blind signature schemes and show that
finding security proofs for these schemes via black-box reductions in the standard model is hard.
Technically, our result deploys meta-reduction techniques showing that black-box reductions for
such schemes could be turned into e�cient solvers for hard non-interactive cryptographic problems
like RSA or discrete-log. Our technique yields significantly stronger impossibility results than
previous meta-reductions in other settings by playing o↵ the two security requirements of the blind
signatures (unforgeability and blindness).

1 Introduction

Blind signatures [Cha83] implement a carbon copy envelope allowing a signer to issue signatures for
messages such that the signer’s signature on the envelope is imprinted onto the message in the sealed
envelope. In particular, the signer remains oblivious about the message (blindness), but at the same
time no additional signatures without the help of the signer can be created (unforgeability).

Many blind signature schemes have been proposed in the literature, e.g., [Cha83, JLO97, PS00,
Abe01, Bol03, CKW04, KZ06, Fis06, Oka06, HK07, HKKL07, FS09, AO09], with varying security and
e�ciency characteristics. The arguably most prominent examples are the schemes by Chaum [Cha83]
based on RSA and the ones by Pointcheval and Stern [PS00] based on the discrete logarithm problem,
RSA and factoring. Both approaches admit a security proof in the random oracle model, in the
case of Chaum’s scheme the “best” known security proofs currently even requires the one-more RSA
assumption [BNPS03].

Here we investigate the possibility of instantiating the random oracles in the schemes by Chaum
and by Pointcheval and Stern, and of giving a security proof based on standard assumptions like RSA
or discrete logarithm. Although both schemes are di↵erent in nature we can subsume them under a
more general pattern of blind signature schemes where

• blindness holds in a statistical sense, i.e., where even an unbounded malicious signer cannot link
executions of the issuing protocol to message-signature pairs,

• the interactive signature issuing has three (or less) moves, and

• one can verify from the communication between a possibly malicious signer and an honest user
if the user is eventually able to derive a valid signature from the interaction.
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Figure 1: Meta-reduction technique: The black-box reduction R on the left hand side uses the adversary A⌃ against
unforgeability to solve an instance y of the non-interactive problem. The meta-reduction M on the right hand side then
uses R to solve the problem from scratch, i.e., by simulating A⌃ without ⌃. For this, the meta-reduction M exploits
the blindness property of the scheme.

We note that the construction by Boldyreva [Bol03] based on the one-more Gap Di�e-Hellman prob-
lem in the random oracle model also obeys these three properties such that any impossibility result
immediately transfers to this scheme as well. The third property, which we coin signature derivation
check, basically guarantees that blindness still holds if the user fails to produce a signature in the
postprocessing step, after the actual interaction with the signer has been completed. Common no-
tions of blindness do not provide any security guarantee in this case (see [CNS07, FS09] for further
discussions).

1.1 The Idea Behind our Result

Given a blind signature scheme with the properties above we can show that for such schemes finding
black-box reductions from successful forgers to any underlying non-interactive cryptographic problem
(like RSA, discrete-log or general one-wayness or collision-resistance) is infeasible. The key idea to
our result is as follows. Assume that we are given a three-move blind signature scheme as above and
a reduction R reducing unforgeability to a presumably hard problem (given only black-box access to
an alleged forger). Vice versa, if the problem is indeed infeasbile, then the reduction therefore shows
that the scheme is unforgeable.

Our approach is to show that the existence of a reduction R as above already violates the as-
sumption about the hardness of the underlying problem. Our starting point is to design an oracle ⌃
with unlimited power and a “magic” adversary A⌃ breaking the unforgeability of the blind signature
scheme with the help of ⌃. By assumption, the reduction R with access to A⌃ is then able to break
the underlying cryptographic problem (see the left part of Figure 1). Note that, at this point, we are
still in a setting with an all-powerful oracle ⌃ and the non-interactive problem may indeed be easy
relative to this oracle, without contradicting the presumed hardness in the standard model.

Now we apply meta-reduction techniques, as put forward for example in [BV98,Cor02,Bro06,PV06],
to remove the oracle ⌃ from the scenario. Given R we show how to build a meta-reduction M (a
“reduction for the reduction”) to derive an e�cient solver for the problem, but now without any
reference to the magic adversary and ⌃ (right part of Figure 1). To this end, the meta-reduction M

fills in for adversary A
⌃ and simulates the adversary’s actions without ⌃, mainly by resetting the

reduction R appropriately. We have then eventually derived an algorithm M
R solving the underlying

non-interactive problem in the standard model, meaning that the problem cannot be hard. In other
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words, there cannot exist such a reduction R to a hard problem.1

At this point it seems as if we have not used the blindness property of the scheme and that the idea
would paradoxically also apply to regular signature schemes (for which we know secure constructions
based on any one-way function). This is not the case. The blindness subtly guarantees that the meta-
reduction’s simulation of the adversary is indistinguishable from the actual behavior of A⌃, such that
the success probabilities of RA⌃ and of MR are close. For these two cases to be indistinguishable,
namely R communicating with A

⌃ or with M, we particularly rely on the fact that blindness holds
relative to the all-powerful oracle ⌃ used by A, as in case of statistically-blind signature schemes.

1.2 The Essence of Our Meta-Reduction and Impossibility of Random Oracle
Instantiations

There are essentially two approaches in the literature to derive black-box separations like ours. One
class of black-box separation results (e.g., [IR89, Sim98, RTV04]) basically starts with an oracle ⌃
breaking any cryptographic primitive of type A, like a collision-resistant hash function, but adds an
oracle ⇧ implementing another primitive of type B like a one-way function (and which cannot be
broken by ⌃). Here, the cryptographic primitives in question are usually treated as black boxes.

The other approach uses meta-reductions [BV98,Cor02,Bro06,PV06,Bro07,BMV08] and usually
treats the adversary as a black box. In our case, we show that no black-box reduction to arbitrary (non-
interactive) cryptographic problems can exist. This includes common assumptions like the RSA and
discrete logarithm problem, but also more general notions of one-way functions and collision-resistant
hash functions. Compared to oracle-based separations and previous meta-reduction techniques our
result gives the following two advantages:

• Oracle separations involving a “positive” oracle ⇧ implementing a primitive often do not allow
to make statements about the possibility of deriving schemes based on concrete primitives such
as RSA or discrete-log. The latter primitives have other properties which could potentially be
exploited for a security proof, like homomorphic properties. This limitation does not hold for
our results.

• Meta-reduction separations such as [PV06,Bro07,BMV08] consider the impossibility of reduc-
tions from secure encryption or signatures to a given RSA instance. Yet, they often fall short
of providing any meaningful claim if other assumptions enter the security proof, e.g., the result
in [PV06] does not hold anymore if two RSA instances are given or an additional collision-
resistant hash function is used in the design. In comparison, our general approach covers such
cases as we can easily combine non-interactive problems P1, P2 into more complex problems like
P1 _P2 and P1 ^P2, requiring to break one of the two problems and both of them, respectively.

The latter advantage emerges because our meta-reduction plays o↵ unforgeability against blindness.
This technique may be useful in similar settings where two or more security properties are involved,
to provide stronger separation results for meta-reductions.

The broader class of problems ruled out by our meta-reduction also allows to make meaningful
claims when it comes to the possibility instantiating the random oracle in the blind signature schemes.

1We consider very general reductions running multiple instances of the adversary in a concurrent and resetting manner,
covering all known reductions for blind signatures in the literature. Yet, since the meta-reduction itself uses rewinding
techniques, we somewhat need to restrict the reduction in regard of the order of starting and finishing resetted executions
of di↵erent adversarial instances (called resetting with restricted cross-resets). This saves us from an exponential running
time forM. For example, any resetting reduction running only a single adversarial instance at a time obeys our restriction.
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Namely, our separation indicates the limitations of hash function options (assuming some restriction
on the resets of the reductions, mentioned in the previous section):

Any hash function whose security can be proven by black-box reduction to hard non-interactive
problems does not allow a black-box reduction from the unforgeability of the blind signature
scheme to hard non-interactive problems, such as RSA or discrete-logarithm.

This can be seen as follows. Any reduction from the unforgeability either breaks the underyling non-
interactive problem like RSA or discrete-log, or breaks some security property of the hash function.
The latter, in turn, yields a nested reduction from the unforgeability of the blind signature scheme
to the non-interactive problem on which the hash function is based. One only needs to ensure that
this nested reduction falls within our admissible reset strategy. This is clearly true if the security
property of the hash function is given by a hard non-interactive problem itself, like one-wayness or
collision-resistance, or allows a suitable reduction to these problems or RSA, discrete-log etc.

1.3 Extension to Computational Blindness

In principle our result extends to computationally-blind signature schemes but the conditions are
arguably more restrictive than in the statistical case. First, recall that blindness needs to hold relative
to the forgery oracle ⌃, i.e., the powerful forgery oracle must not facilitate the task of breaking
blindness. While this comes “for free” in the statistical case, in the computational case one must
assume that unforgeability and blindness of the scheme are somewhat independent. This is true for
instance for Fischlin’s scheme [Fis06], but there are also examples where blindness and unforgeability
are correlated, as in Abe’s scheme [Abe01] where unforgeability is based on the discrete-log problem
and blindness on the DDH problem.

Second, given that the scheme is computationally-blind relative to ⌃ we still rely on the signature
derivation check. One can easily design computationally-blind schemes infringing this property, say,
by letting the user sent a public key and having the signer encrypt each reply (we are not aware of
any counter example in the statistical case). On the other hand, these signature derivation checks are
very common, e.g., besides the schemes above the ones by Okamoto [Oka06] and by Fischlin [Fis06]
too have this property.

Third, since we have to change the forgery oracle ⌃ for the computational case, we also need a
key-validity check which allows to verify if a public key has a matching secret key (i.e., if there is a
key pair with this public key in the range of the key generating algorithm). For schemes based on
discrete-logarithm this usually boils down to check that the values are group elements. Given that
these three conditions are met we show that our techniques carry over to the computational case.

1.4 Related Work

In a sense, our results match the current knowledge about the round complexity of blind signature
schemes. Nowadays, the best upper bound to build (non-concurrently) secure blind signatures are
four moves for the standard model, i.e., neither using random oracles nor set-up assumptions like a
common reference string. This is achieved by a protocol of Okamoto [Oka06] based on the 2SDH
bilinear Di�e-Hellman assumption. Any schemes with three moves or less either use the random
oracle model [Cha83,PS00,Bol03] or a commom reference string [Fis06,HK07,AO09].

We note that Lindell [Lin03] rules out any concurrently secure blind signature scheme in the
standard model, independently of any cryptographic assumption. Hence, it seems that two-move
schemes —which are concurrently secure by nature— are impossible in the standard model. However,
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Lindell’s impossibility result only refers to the stronger (black-box) simulation-based definition of blind
schemes and can indeed be circumvented by switching to the common game-based definition, as shown
by [HKKL07]. In contrast, our result holds with respect to game-based definitions and also covers
three-move schemes, thus showing that such blind signature schemes may be hard to build even under
this relaxed notion.

The recent results by Brown [Bro07] and Bresson et al. [BMV08] show meta-reduction based sepa-
rations of the one-more RSA and one-more discrete-logarithm problem from their regular counterparts.
The conclusion in [BMV08] is that it should be hard to find a security proof for Chaum’s scheme and
the Pointcheval-Stern schemes using only these regular assumptions. As mentioned before, the meta-
reductions in [Bro07,BMV08] are limited in the sense that they either cannot rewind (as in [Bro07])
or can only forward the input RSA or discrete log problem (as in [BMV08]). Our approach, however,
considers arbitrary hard non-interactive problems and is robust with respect to the combination of
several underlying assumptions.

We also remark that the well-known three-move lower bound for non-trivial zero-knowledge [GK96]
is not known to provide a lower bound for blind signature schemes. The intuitively appealing idea of
using the blind signature scheme as a commitment scheme in such zero-knowledge proofs unfortunately
results in proofs which require more than three moves. This is even true if we start with a two-move
blind signature scheme where a “hidden” third move is required for the initial transmission of the
signer’s public key. In addition, the game-based notion of blind signatures is not known to yield
appropriate zero-knowledge simulators.

Organization. We start with the definition of blind signature schemes in Section 2. In Section 3
we discuss our notion of black-box reductions to hard problems. Before presenting our main result
in Section 5 where we show the hardness of finding black-box reductions from unforgeability to non-
interactive problems we first discuss a simpler case for restricted reductions in Section 4 to provide
some intuition about the general result. We have delegated the case of computational blindness to
Appendix A.

2 Blind Signatures

To define blind signatures formally we introduce the following notation for interactive execution be-
tween algorithms X and Y. By (a, b)  hX (x),Y(y)i we denote the joint execution, where x is the
private input of X , y defines the private input for Y, the private output of X equals a, and the pri-
vate output of Y is b. We write YhX (x),·i1(y) if Y can invoke an unbounded number of executions
of the interactive protocol with X in sequential order. Accordingly, X h·,Y(y0)i1,h·,Y(y1)i1(x) can invoke
sequentially ordered executions with Y(y0) and Y(y1), but interact with each algorithm only once.

Definition 2.1 (Blind Signature Scheme) A blind signature scheme consists of a tuple of e�cient
algorithms BS = (KG, hS,Ui ,Vf) where

Key Generation. KG(1n) generates a key pair (sk, pk).

Signature Issuing. The joint execution of algorithm S(sk) and algorithm U(pk, m) for message m 2

{0, 1}n generates an output � of the user, (?,�) hS(sk),U(pk, m)i, where possibly � = ?.

Verification. Vf(pk, m,�) outputs a bit.

It is assumed that the scheme is complete, i.e., for any (sk, pk)  KG(1k), any message m 2 {0, 1}n

and any � output by U in the joint execution of S(sk) and U(pk, m) we have Vf(pk, m,�) = 1.
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Security of blind signature schemes requires two properties, unforgeability and blindness [JLO97,PS00].
A malicious user U⇤ against unforgeability tries to generate k + 1 valid message-signatures pairs after
at most k completed interactions with the signer, where the number of interactions is adaptively
determined by the user during the attack. The blindness condition says that it should be infeasible
for a malicious signer S⇤ to decide upon the order in which two messages m0 and m1 have been signed
in two executions with an honest user U .

Definition 2.2 (Secure Blind Signature Scheme) A blind signature scheme BS = (KG, hS,Ui ,

Vf) is called secure if the following holds:

Unforgeability. For any e�cient algorithm U
⇤ the probability that experiment ForgeBS

U⇤ evaluates to
1 is negligible (as a function of n) where

Experiment ForgeBS
U⇤

(sk, pk) KG(1n)
((m1,�1), . . . , (mk+1,�k+1)) U

⇤hS(sk),·i1(pk)
Return 1 i↵

mi 6= mj for 1  i < j  k + 1, and
Vf(pk, mi,�i) = 1 for all i = 1, 2, . . . , k + 1, and
at most k interactions with hS(sk), ·i1 were completed.

Computational resp. Statistical Blindness. For any (e�cient resp. unbounded) algorithm S
⇤

working in modes find, issue and guess, the probability that the following experiment BlindBS
S⇤

evaluates to 1 is negligibly close to 1/2, where

Experiment BlindBS
S⇤

(pk, m0, m1, stfind) S
⇤(find, 1n)

b {0, 1}
stissue  S

⇤h·,U(pk,mb)i1,h·,U(pk,m1�b)i1(issue, stfind)
and let �b,�1�b denote the (possibly undefined) local outputs
of U(pk, mb) resp. U(pk, m1�b).

set (�0,�1) = (?,?) if �0 = ? or �1 = ?
b
⇤
 S

⇤(guess,�0,�1, stissue)
return 1 i↵ b = b

⇤.

We remark that, even if occassionally not mentioned, all algorithms in this paper receive the
security parameter 1n as additional input.

3 Hard Problems and Black-Box Reductions

In order to prove the security of a cryptographic protocol, usually reduction techniques are used. A
reduction from a cryptographic protocol to an underlying problem shows that breaking the protocol
implies breaking the underlying problem. A reduction is black-box if it treats the adversary and/or
the underlying primitive as an oracle. Reingold et al. [RTV04] call reductions which use both the
adversary and the primitive merely as an oracle fully-black-box, whereas semi-black-box reductions
work for any e�cient adversaries (whose code the reduction may access) as long as the primitive is
black-box.
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In our case we only need the orthogonal requirement to semi-black-box reductions, namely that
the reduction treats the adversary as an oracle but we do not make any assumption about the repre-
sentation of the underlying primitive. The reduction we consider works for any kind of non-interactive
primitive (i.e., in which one gets an instance as input and outputs a solution without further interac-
tion):

Definition 3.1 (Hard Non-Interactive Problem) A non-interactive (cryptographic) problem P =
(I, V ) consists of two e�cient algorithms:

Instance generation I(1n). The instance generation algorithm takes as input the security parameter
1n and outputs an instance y.

Instance Verification V (x, y). The instance verification algorithm takes as input a value x as well
as an instance y of a cryptographic problem, and outputs a decision bit.

We call a cryptographic problem P hard if the following condition is fulfilled:

Hardness. We say that an algorithm A solves the cryptographic problem P if the probability that A
on input y  I(1n) outputs x

0 such that V (x0, y) = 1, is non-negligible. We say that the problem
P is hard if no e�cient algorithm solves it.

Note that in the definition above we do not impose any completeness requirement on the cryptographic
problem. The reason is that reductions from the security of blind signatures must work for arbitrary
problems, and in particular to the ones with non-trivial completeness conditions.

The notion of a non-interactive cryptographic problem clearly covers such popular cases like the
RSA problem, the discrete logarithm problem, or finding collisions for hash functions. It also comprises
more elaborate combination of such problems, e.g., if P0, P1 are two non-interactive problems then so
are P0^P1 and P0_P1 (with the straightforward meaning requiring to solve both problems or at least
one of them).

Very often in cryptography one builds protocols from several primitives P0, P1, . . . , Pk, and one gets
a sequence of reductions R1, . . . ,Rk to each primitive, but where the reduction Ri has full control
over the other primitives. For instance, a protocol may rely on the RSA problem (P0) and collision-
intractable hash functions (P1) and any break either yields an RSA solver (R0) or a collision-finder
(R1). But reduction R1 itself may take advantage of the fact that it knows the factorization for the
RSA-part (or even picks the modulus itself). Such cases are also subsumed by considering the problem
P which generates yi  Ii(1n) for i = 1, 2, . . . , k and outputs a randomly chosen instance.

4 Warm Up: Impossibility Result for Vanilla Reductions

To give some intuition about our technique we first consider the simpler case of vanilla reductions.
This type of reduction only runs a single execution with the adversary (without rewinding) and, if
communicating with an honest user, makes the user output a valid signature with probability 1. This
means that a vanilla reduction takes advantage of the magic adversary and its output, instead of
solving the problem on its own. We then augment our result in the next section to deal with resetting
reductions running multiple adversarial instances.
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4.1 Preliminaries

For our impossibility result we need another requirement on the blind signature scheme, besides
statistically blindness. This property says that one can tell from the public data and communication
between a malicious signer and an honest user whether the user is able to compute a valid signature
or not.

For instance, in Chaum’s scheme the honest user sends a value y and receives z from the signer,
and the user is able to compute a signature � for an arbitrary message m if and only if z

e = y mod
N . This is easily verifiable with the help of the public key and the communication. The scheme
of Pointcheval and Stern implements the signature derivation check already in the user algorithm.2

Analogous derivation checks occur in the schemes by Okamoto and by Fischlin. More formally:

Definition 4.1 (Signature-Derivation Check) A blind signature scheme BS allows (computational
resp. statistical) signature-derivation checks if there exists an e�cient algorithm SDCh such that for
any (e�cient resp. unbounded) algorithm S

⇤ working in modes find and issue the probability that the
experiment SigDerCheckBS

S⇤,SDCh evaluates to 1 is negligible, where

Experiment SigDerCheckBS
S⇤,SDCh

(pk, m, st) S
⇤(find, 1n)

(?,�) hS⇤(issue, st),U(pk, m)i
where trans denotes the communication between S

⇤, U
c SDCh(pk, trans)
return 1 if � 6= ? and c = 0, or if � = ? but c = 1.

In the computational case, if the above holds even if S⇤ gets access to an oracle ⌃ then we say that the
scheme has computational signature-derivation checks relative to ⌃. (In the statistical case S⇤ could
simulate ⌃ internally, such that granting access to ⌃ is redundant.)

The notion in some sense augments the blindness property of blind signature schemes to the case
that the user algorithm fails to produce a valid signature in the final local step. The common notion of
blindness does not provide any security in this case (because the malicious signer does not receive any
of the signatures if the user fails only then). See [FS09] for more discussions and solutions. Here, the
signature derivation check provides something stronger, as it can be e�ciently performed by anyone
and holds independently of the user’s message.

Next we introduce a weaker notion than blindness which is geared towards our separation result.
Informally, a blind signature scheme has so-called transcript-independent signatures if one cannot
associate a transcript to a signature. This is formalized by comparing signatures generated via an
execution with a malicious signer and signatures generated “magically” via an oracle ⌃ producing the
signature for a message from the public key and the transcript of the first execution. The intuition
behind the following experiment is that the malicious signer has to distinguish whether the second
signature �b results from the signature issuing protocol, or if the oracle ⌃ derived the signature �b

from the transcript of the signature issuing protocol where the honest user gets as input the message
m0.

Definition 4.2 (Transcript-Independent Signatures) A blind signature scheme BS has (compu-
tationally resp. statistically) transcript-independent signatures with respect to ⌃ if for any (e�cient
resp. unbounded) algorithm S

⇤
trans the probability that the experiment trans-indBS

S⇤trans,⌃
(n) evaluates to 1

is negligibly close to 1/2, where
2The signature derivation check is given by the user’s local verification a = gRhSye, where the values a, r, R, S are

exchanged during the signature issuing protocol and the values g, h, y are part of the public key.
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Experiment trans-indBS
S⇤trans,⌃

(n):
b {0, 1}
(pk, st1, m�1, m0) S

⇤,⌃
trans(init, 1n)

st2  S
⇤,⌃
trans

h·,U(pk,m�1)i1,h·,U(pk,m0)i1
(issue, st1)

let ��1 and �0 be the local outputs of the users in the two
executions (possibly ��1 = ? and/or �0 = ?)
and let trans�1 be the transcript of the left execution

set m1 = m0 and compute �1  ⌃(pk, trans�1, m1)
set (��1,�0,�1) = (?,?,?) if ��1 = ? or �0 = ? or �1 = ?
b
⇤
 S

⇤,⌃
trans(guess, st2, m�1,��1, mb,�b)

return 1 i↵ b = b
⇤.

To define our generic forgery oracle ⌃ allowing A to break unforgeability we first outline the idea for
the case of Chaum’s blind signature scheme. Assume that the adversary has already obtained a valid
signature for some message m

0 by communicating with the signer. Let trans = (y, z) denote the tran-
script of this communication. Algorithm ⌃(pk, trans, m) for m 6= m

0 then searches some randomness
r such that the user’s first message for m and r matches y in the transcript, i.e., H(m)re mod N = y.
Such an r exists by the perfect blindness and the signature derivation check.3

The above example can be generalized to any blind signature scheme and the following generic
forgery oracle (which only depends on the blind signature scheme in question):

Definition 4.3 (Generic Forgery Oracle) For a statistically-blind signature scheme BS the generic
forgery oracle ⌃(pk, trans, m) performs the following steps:

enumerate all values r such that
the user algorithm U(pk, m) for randomness r generates the same
transcript trans when fed with the same signer messages as in trans;
also store all signatures � the user’s algorithm generates in these executions.

select a value r of the set at random and return the corresponding signature �
(or return ? if there is no such r).

The next proposition shows that every statistically blind signature scheme that allows signature-
derivation checks which has access to ⌃ has already transcript-independent signatures.

Proposition 4.4 Every statistically blind signature scheme, which has statistical signature-derivation
checks, also has statistical transcript-independent signatures with respect to the generic forgery oracle
⌃.

Proof. Assume that there exists a signer S⇤trans in experiment trans-indBS
S⇤,⌃(n) with the generic forgery

oracle ⌃ which outputs b
⇤ = b with non-negligible probability beyond 1/2. Then we construct an

adversarial controlled signer S⇤blind against the blindness (with oracle access to ⌃) as follows. Algorithm
S
⇤
blind invokes S⇤trans(init, 1n) to get (pk, st1, m�1, m0); it uses its access to ⌃ to answer any request of
S
⇤
trans to this oracle. Algorithm S

⇤
blind then outputs (pk,m�1, m0) according to the blindness experiment

and subsequently relays the entire communication between the two honest user instances U and S⇤trans.
In the case that S⇤blind obtains two undefined signatures from the blindness experiment, i.e., (��1,�0) =

3Note that blindness for Chaum’s scheme is only guaranteed if the user can verify that the exponent e is relatively
prime to '(N), say, if e is a prime larger than N ; only then is guaranteed that the function (·)e mod N really is a
permutation.
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(?,?), then S⇤blind returns (m�1,?, m0,?) to S⇤trans. Otherwise, if both executions have been successful,
then S

⇤
blind executes S⇤trans in mode guess on input (st2, m�1,��1, m0,�0) to obtain a bit b

⇤, where st2
is the state returned by S⇤trans(st1) after the interaction with the users. Algorithm S

⇤
blind returns b

⇤ as
its decisional bit.

For the analysis first observe that, if the left user instance yields a valid signature ��1 6= ?, then
⌃ too succeeds in producing a valid signature with overwhelming probability. This is true since the
scheme allows signature-derivation checks and is statistically blind. More specifically, call a tuple
(pk, st1, m�1, m0) output by the transcript adversary S

⇤
trans bad if the probability (over the user’s

randomness) that the user is able to produce a valid signature from the communication with the
transcript adversary for m�1, but the signature derivation check returns 0 or the transcript is not in
the range of possible transcripts for message m0, is non-negligible. Note that we can assume that S⇤trans

is deterministic and chooses the bad tuple (pk, st1, m�1, m0) that maximizes the probability. Then the
probability that the signature derivation check answers inconsistently is negligible. The probability
that the transcript is not in the range for message m0 is negligible by the statistical blindness (else
one could easily break blindness with the help of S⇤trans). It follows that there is no bad tuple.

Hence, given that the user picks randomness such that it can compute a signature, except with
negligible probability the transcript is also in the range for m0 and the signature derivation check
indicates success. Since the answer of the signature derivation check only depends on the public key
and the transcript, it follows that the user’s algorithm is in principle also able to derive a signature
for m0. Therefore, the forgery oracle is able to find such a valid signature, except with negligible
probability. From now we can thus assume that the transcript adversary receives undefined signatures
only if one of the user instances fails to compute a signature.

Consider now the case where the bit b equals 0. The adversary S⇤blind in this case receives the second
message-signature pair (m0,�0) from the right execution with the honest user U . It is easy to see that
this experiment corresponds (almost) exactly to the blindness experiment (taking into account that
undefined signatures only depend on success in the user instances). Thus, S⇤blind performs an almost
perfect simulation from S

⇤
trans’s point of view.

Now we investigate the case b = 1. In the blindness experiment the malicious signer then com-
municates with the left user instance U(pk, m1) and with the right instance U(pk,m0). In contrast,
S
⇤
trans in the transcript-independence experiment interacts on the left side with a user instance that

has been initialized with the message m0 (instead of m�1) and obtains the second signature ��1 from
the oracle ⌃ for the same message m1 = m0.

It holds again that the oracle succeeds whenever the left user instance is able to compute a signature
(this follows immediately by construction of ⌃ since the set of possible random inputs contains at
least the actual randomness used by the honest user in the left instance). Because the forgery oracle
enumerates all possible randomness r such that it can derive a valid signature and selects one of them
at random, the output distribution here is identical to the case of an interaction with the user. Thus,
the simulation of S⇤trans is perfect in this case. But then we can conclude that if S⇤trans succeeds with
non-negligible probability over 1/2, then S

⇤
blind also succeeds with non-negligible probability bounded

away from 1/2. ⇤

We point out that the proof implicitly shows that, if the left user instance in the transcript-
independence experiment succeeds in producing a signature, then so does the generic forgery oracle
with overwhelming probability. Since this will be used again later in the proof of the separation result
we state this as a corollary more explicitly:

Corollary 4.5 For every statistically blind signature scheme with statistical signature-derivation checks,
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which is blind relative to the generic forgery oracle ⌃, the probability that in the transcript-independence
experiment we have ��1 6= ? and �1 = ? after the run of ⌃, is negligible.

Given the generic forgery oracle ⌃ we can now define the “magic” adversary which first plays an
honest users communicating with the signer once. If this single execution yields a valid signature (which
is certainly the case when interacting with the genuine signer, but possibly not when interacting with
the reduction), then the adversary generates another valid message-signature pair without interaction
but using ⌃ as a subroutine instead.

Definition 4.6 (Magic Adversary) The magic adversary A for input pk and with oracle access to
the generic forgery oracle ⌃ and communicating with an oracle hS(sk), ·i1 is described by the following
steps:

pick random messages m
0
0, m

0
1  {0, 1}n

run an execution hS(sk),U(pk, m0
0)i in the role of an honest user

to obtain �
0
0 and let trans00 be the corresponding transcript

if Vf(pk, m0
0,�

0
0) = 1 then let �01  ⌃(pk, trans00, m

0
1) else set �01  ?

return (m0
0,�

0
0, m

0
1,�

0
1)

By the completeness of the blind signature scheme the magic adversary, when attacking the honest
signer, returns two valid message-signature pairs, with probability negligibly close to 1 (there is a
probability of at most 2�n that the adversary outputs identical pairs for m

0
0 = m

0
1). We also remark

that the magic adversary, when attacking the actual scheme, applies the forgery oracle to derive a
signature for the second message using the transcript of the first signature issuing protocol.

4.2 Impossibility Result

The following theorem states that vanilla black-box reductions to (non-interactive) cryptographic
problems do not provide a meaningful security statement. That is, if there was such a reduction then
the underlying problem would already be easy. Since we only deal with non-resetting reductions the
claim even holds for schemes with arbitrary round complexity (instead of three-move schemes):

Theorem 4.7 Let BS be a statistically blind signature scheme that allows statistical signature-derivation
checks. Then there is no vanilla black-box reduction from unforgeability of the blind signature scheme
BS to a hard non-interactive problem.

Proof. For sake of readability we divide the reduction R into steps, according to the black-box
simulation of the magic adversary in which R takes over the role of the signer: in mode init the
reduction outputs the public key pk and in mode msgi the reduction creates the i-th protocol message
msgi of the signer. After getting the adversary’s signatures �0,�1 in the post-processing step final the
reduction outputs a putative solution x

0 for its input y. In each step the reduction also outputs some
state information which is passed on to the next stage.

Analogously to the reduction R we denote by msgj the step of the honest user U which on input
a public key pk, a message m and the previous message msgi of the signer, outputs message msgj

sent to the signer. Likewise, in mode finish the user creates the signature from its state and the final
message sent by the signer.
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Meta-reduction M(y)
let (pk, stinit) R(init, y)
let (msg1, stmsg1) R(msg1, stinit)

choose m0  {0, 1}n choose m1  {0, 1}n

let (msg20, st
0
msg2) U(msg2, pk, m0,msg1) let (msg21, st

1
msg2) U(msg2, pk, m1,msg1)

let (msg30, st
0
msg3) R(msg3, stmsg1,msg20) let (msg31, st

1
msg3) R(msg3, stmsg1,msg21)

let �0  U(finish, st0msg2,msg30) let �1  U(finish, st1msg2,msg31)
output x

0
 R(final, st0msg3, m0,�0, m1,�1)

Figure 2: Meta-Reduction for Vanilla Reduction (three moves), where trans0 = (msg1, msg2, msg3) denotes the transcript
of the first execution.

Description of the Meta-Reduction. The meta-reduction M works as follows (see Figure 2
for the case of three moves). It gets as input an instance y of the problem. It start to simulate
the reduction R on y to derive a public key pk as well as the first message msg1 on behalf of the
signer and a state stmsg1. Algorithm M first completes an instance of the signature issuing protocol
with R using the program of the honest user on input a random message m0 from {0, 1}n and some
randomness r. Afterwards, it selects another message m

0 from {0, 1}n at random together with some
independent randomness r

0 and resets the reduction to the point where R has returned the first
message of the signature issuing protocol. As before, M executes the honest user algorithm on m

0

using the randomness r
0.

Now, if the meta-reduction obtains two valid signatures �0,�1 from both executions, then it hands
the pairs (m0,�0), (m1,�1) to the reduction which then outputs some x

0. The meta-reduction returns
x
0 and stops. For brevity we often write RM(y) for this interaction.

Analysis of the Meta-Reduction. The final step is to show that the reduction R successfully
outputs a solution x

0, even if given the pairs from M instead of receiving them from the magic
adversary. For this it su�ces to show that

Prob
⇥
y  I(1n), x0  R

M(y) : V (x0, y) = 1
��M

⇤

is non-negligible. As outlined above, for this we exploit the transcript-independence of signatures.
Assume to the contrary that the reduction R outputs a valid solution x

0 with non-negligible
probability if R receives two message-signature pairs (m0,�0), (m1,�1) from the magic adversary,

Prob
⇥
y  I(1n), x0  R

A(y) : V (x0, y) = 1
��A magic

⇤
6⇡ 0,

but succeeds only with negligible probability if the message-signature pairs are generated by M:

Prob
⇥
y  I(1n), x0  R

M(y) : V (x0, y) = 1
��M

⇤
⇡ 0.

Then we construct an adversary S⇤trans who breaks the transcript independence of signatures in exper-
iment trans-indBS

S⇤,⌃(n).

Description of Adversary S
⇤
trans. Informally, the adversary relays the first execution between

the reduction and the external user instance and resets to reduction afterwards to answer the second
execution. Afterwards S⇤trans receives two message-signature pairs without knowing whether the second
signature �0 has been derived from the signature issuing protocol or with the help of ⌃. We then use
the result of the reduction to distinguish this case.
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More formally, the adversary S⇤trans generates an instance y  I(n) of a cryptographic problem P .
It simulates R in a black-box way, which for input y initially outputs a public key pk as well as the first
message msg1 and some state information stmsg1. The algorithm S

⇤
trans selects two random message

m�1, m0 2 {0, 1}n and outputs pk,m�1, m0 according to the transcript-independence experiment. It
stores the first message (from R to U) and relays the communication between the reduction R and
the first external user instance U(pk,m�1). Then the adversary resets R to the point where R has
returned msg1 and forwards the communication between R and U .

After having finished both executions S⇤trans receives two (valid) signatures (��1,�0) and runs the
reduction R in mode final on input (st0msg3, m�1,��1, m0,�0) to obtain a putative solution x

0 of the
cryptographic problem P . The final output of the adversary is b

⇤
 V (x0, y).

Analysis of S
⇤
trans. For the analysis recall that the magic adversary, after a single interaction,

outputs two message-signature pairs (with the help of ⌃). In fact, taking the message-signature pairs
(m�1,��1) of the first execution together with the message-signature pair (m0,�0) derived from ⌃
in experiment trans-indBS

S⇤,⌃(n) corresponds exactly to the behavior of the magic adversary (b = 0).
Here we take advantage of the fact that the second execution with the user cannot fail (and force the
signatures to be undefined) by our assumption about the vanilla reduction always making the honest
user derive a signature.

On the other hand, during the issuing protocol with the honest user U , the adversary S⇤trans resets
R and uses in the second execution the prefix msg1 (obtained during the signature generation of
(m�1,��1)) in experiment trans-indBS

S⇤,⌃(n). Therefore the message-signature pairs (m�1,��1), (mb,�b)
are computed in the same way as the meta-reduction M does (b = 1). Note that the additional run
of ⌃ in the transcript-independence experiment cannot make the three signatures invalid (except with
negligible probability), because of the statistical blindness and the signature derivation checks. More
specifically, the statistical blindness guarantees that the transcript generated with U for message m�1

is (almost surely) also a potential transcript for m0 = m1 used by ⌃. Furthermore, the signature
derivation check tells us that, independently of the message, the transcript allows the user to derive
a signature (such that ⌃, too, will find a valid random string r for the simulated user with a valid
signature). This fact is stated more formally in Corollary 4.5. For simplicity we neglect the small
error for ⌃ returning an invalid signature in the analysis below.

We obtain for the probability that S⇤trans outputs the right bit b
⇤ = b:

Prob[ b⇤ = b] = 1
2 + 1

2 · (Prob[ b⇤ = 1 | b = 1]� Prob[ b⇤ = 1 | b = 0])

According to our construction, b = 0 corresponds to the case where the simulation mimics the behavior
of the magic adversary, and b = 1 the setting involving the meta-reduction. Furthermore, the adversary
S
⇤
trans returns b

⇤ = 1 in the case that the reduction R returns a valid solution x
0 of y. Hence,

Prob[ b⇤ = 1 | b = 1]� Prob[ b⇤ = 1 | b = 0]

= Prob
⇥
y  I(1n), x0  R

A(y) : V (x0, y) = 1
��A magic

⇤

� Prob
⇥
y  I(1n), x0  R

M(y) : V (x0, y) = 1
��M

⇤
.

By assumption the di↵erence is non-negligible (because the first probability is non-negligible and we
have assumed that the second probability is negligible). This, however, contradicts the transcript
independence of signatures. ⇤
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5 Impossibility Result for Statistically Blind Signature Schemes

Here we discuss more general reductions which may reset the adversary and run several nested exe-
cutions with multiple copies of the adversary. For simplicity, we model a single, resettable instance
of the adversary as a sequence of identical copies of the adversary which cannot be reset. Whenever
the reduction seeks to reset the adversary, we instead invoke the next copy and run it up to the reset
point with the same messages as before.

More precisely, we assume that the reduction R is an interactive Turing machine which commu-
nicates with a “scheduled pool” of q

2 Turing machines Ai,j for i, j = 1, 2, . . . , q for some polynomial
q = q(n) (which is bounded by the running time of the reduction). In this q⇥q matrix each Turing ma-
chine Ai,1, . . . ,Ai,q in row i is initialized with the same random string, which is chosen independently
for each row.

We assume that the reduction has full control over the flow of interactions but can only deliver
the i-th message in an execution after the (i�1)-st message in this execution has been sent (where we
assume that the first transmission also comprises the public key). Instead of resetting the adversary
Ai,j the reduction then invokes the next column Ai,j+1 in this row and sends the same messages as
before up to the reset point (but the reduction can never go back to a previous column). We also
assume for simplicity that the reduction finishes each execution in a row before proceeding to the next
column (say, by sending ? as the third message). The q rows therefore correspond to q independent,
resettable instances of the adversary, and in each row there is at any time only one “active” column
execution.

5.1 Preliminaries

To build our meta-reduction we will reset the reduction continuously. That is, whenever the reduction
expects a forgery from an instance of the magic adversary, we freeze the scenario and branch into a
loop in which the meta-reduction seeks a second valid message-signature pair. In order to avoid an
exponential blow-up in the running time of such rewinding executions [DNS04], we consider slightly
restricted reductions.

Resetting Reductions with Restricted Cross-Resets. Any reduction in our case is allowed
to run concurrent executions with the copies of the adversary, each copy resetting at most q times,
except that the reduction has to finish the interaction in the order according to the arrival of the
second messages of the signature issue protocol. That is, suppose that the reduction receives the
second message msg2 (the user message) in some execution in row i which started with (pk,msg1).
Suppose further that the reduction later finishes some execution with the same first transmission
(pk,msg1) in the same row i by sending a third message allowing the user to derive a signature. Then,
the reduction does not finish any other execution (in a di↵erent row or for distinct (pk

0
,msg10)) in

between these two points such that the user is also able to generate a valid signature for this execution
(see Figure 3 for an example). By this, we can later rewind from the valid signature generation to
the step where msg2 has been sent, without destroying other executions which have been finished
successfully meanwhile.

Note that the scheduling of reductions with restricted cross-resets is related to so-called bounded
concurrent (and resettable) executions [Bar01]. In m-bounded concurrent executions the number of
instances running simultaneously is bounded by some fixed function m = m(n) where the bound itself
is known by the protocol. We do not put any a-priori bound on the number of concurrently running
executions, because the number q of such instances depends on the reduction and is not bounded by
a fixed polynomial. We merely restrict the way successful executions are finished. We also note that
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Figure 3: Example of a resetting scheduling with restricted cross-resets (executions in di↵erent rows may also
run concurrently): Regarding the first and last execution in row 1 there is no other successful execution in
between transmission of msg2 and msg300, except when it uses the same (pk,msg1) in the same row (as the
third execution). The scheduling would violate the restricted resetting scenario if, for example, the execution in
row 2 was valid (even if it was for the same (pk

⇤
,msg1⇤) = (pk,msg1)), or if the third execution in row 1 was

valid but for a di↵erent (pk
0
,msg10).

we can extend our proof below to allow a constant number of successfully finished executions between
pending runs, but state and prove the simpler version for sake of readability.

q-wise Independent Hash Functions. An adequate measure to thwart reset attacks are usually
pseudorandom functions (e.g., as in [CGGM00]). The idea is to make the randomness of the adversary
depend on the communication by computing it as the output of the pseudorandom function for the
communication. In this case, resetting the adversary essentially yields runs with independent random
choices.

Here, we use the same idea but can fall back to the weaker requirement of q-wise independent hash
functions in order to avoid the additional assumption that pseudorandom functions exist. Roughly
speaking, q-wise independent hash function are functions that, when queried for q distinct preimages,
output q independently distributed values:

Definition 5.1 (q-wise Independent Hash Function) A family H of e�ciently computable func-
tions h : {0, 1}a

7! {0, 1}b is q-wise independent if for any distinct elements x1, x2, . . . , xq 2 {0, 1}a

and any y1, . . . , yq 2 {0, 1}b we have

Prob[h(x1) = y1, . . . , h(xq) = yq] = (2�b)q
,

where the probability is taken over the random choice of h. We also assume that the sampling h  

H(1n) is e�ciently computable.

A typical example for q-wise independent hash function is a polynomial of degree q�1 over GF (2a)
for a = b.

We note that using q-wise independent hash functions instead of pseudorandom functions makes
the adversary now depend on the reduction. Namely, below we use q as the number of maximal resets
per row. However, since we deal with black-box reductions this is admissible. We also remark that we
can overcome this dependency by using pseudorandom functions instead of q-wise independent hash
function.
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The New Magic Adversary. We use again the generic forgery oracle from the vanilla case. But
here we augment our “new” magic adversary through a q-wise independent hash function (i.e., the
random hash function h is given by parts of the adversary’s randomness). Informally, the adversary
again runs the issuing protocol with the signer in the role of the honest user once. However, it
now generates the message (and the user’s randomness) as the result of the q-wise independent hash
function applied to the public key and the first message of the signer. Again, in the case that the single
execution yields a valid signature, then the magic adversary here also creates another valid signature.

As we will later view ⌃ to be an integral part of the magic adversary and thus let the adversary
provide the randomness s 2 {0, 1} (n) required by oracle ⌃. We denote this augmented (determin-
istic) oracle with ⌃aug which now takes pk, trans, m and randomness s as input and returns �. This
randomness is also derived through the q-wise independent hash function, ensuring consistent answers
for the same data (pk,msg1). We note that the length  (n) of this randomness is only polynomial by
construction of the generic forgery oracle:

Definition 5.2 (Magic Adversary) The magic adversary A = Aq (with parameter q) for input pk
and access to the generic forgery oracle ⌃aug and communicating with an oracle hS(sk), ·i1 works as
described in the following steps:

select a hash function h from the family of q-wise independent hash functions H
run an execution hS(sk),U(pk, m0

0; r00)i in the role of an honest user, where
(m0

0, m
0
1, r

0
0, s

0
0) h(pk,msg1) is generated as the result of the

q-wise independent hash function applied to the public key pk and
the first message msg1 of S; let �00 denote the resulting signature and
trans00 the corresponding transcript.

if Vf(pk, m0
0,�

0
0) = 1 then let �01  ⌃aug(pk, trans00, m

0
1; s00) else set �00,�01  ?

return (m0
0,�

0
0, m

0
1,�

0
1)

It follows again from the completeness of BS together with the construction of the generic forgery
oracle that the magic adversary succeeds in the unforgeability experiment with probability negligibly
close to 1.

5.2 Impossibility Result

In the following we extend our result to restricted-cross resets.

Theorem 5.3 Let BS be a three-move blind signature scheme, which is statistically blind and has
statistical signature-derivation checks. Then there is no resetting (with restricted cross-resets) black-
box reduction from unforgeability of the blind signature scheme BS to a hard non-interactive problem.

Proof. The idea of the proof follows the one of Theorem 4.7 but di↵ers in the point that the reduction
R is allowed to reset the adversary A. In order to handle these resets, we provide the adversary with a
q-wise independent hash function (i.e., we consider the adversary A = Aq). This makes each resetting
execution independent and allows the meta-reduction M to simulate the reduction. We can now also
switch from ⌃aug to ⌃ as long as we guarantee that ⌃ gives identical answers for executions with the
same pk,msg1; this can be easily implemented by table look-ups.

In the main step of the proof, we then construct a meta-reduction M which mimics the adversarial
behavior (without the help of ⌃) by rewinding the reduction R. This time, instead of rewinding the
reduction only once in the only execution, our meta-reduction branches into a special loop phase to
derive the second message-signature pair. Once entering this phase M rewinds till it finds another
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Figure 4: Continuously rewind to first execution in the row in which the same (pki,j ,msg1i,j) has been sent. By
the restricted resetting scheduling no other execution can finish successfully meanwhile.

accepting execution. Note that this is possible in polynomial time by our assumption about the
restricted resetting scheduling, because no other execution is successfully finished meanwhile. When
M has found another valid pair it returns to the main simulation of the reduction.

We again show that M’s behavior and the one of the magic adversary are indistinguishable to R
by the transcript independence of signatures. But this time, unlike in the case of vanilla reductions
where we only had a single rewinding, the meta-reductions here loops multiple times to find the second
message-signature pair. In order to show that transcript independence guarantees indistinguishability
in this case, we need to be able to check if we have inserted the external data from the tanscript-
independence experiment in the right loop. This can be ensured by the signature derivation checks.

Description of the Meta-Reduction. The input of the meta-reduction M is an instance y of a
cryptographic problem P . It runs black-box simulation of the reduction R on input y and initializes
an empty list L. This list stores elements of the form (i, j, pki,j ,msg1i,j , m

0
i,j ,�

0
i,j) which correspond

to the (i, j)-th execution; where the tuple (pki,j ,msg1i,j) has been used during the first transmission;
and the message-signature pair (m0

i,j ,�
0
i,j) has been derived by rewinding.

Now, the reduction R expects to communicate in a black-box way with an adversary A. The
meta-reduction M mimics the magic adversary A but computes the second message-signature pair
di↵erently. That is, consider the (i, j)-th execution, where the meta-reduction M receives the third
message msg3i,j that allows it to compute a signature �i,j for a message mi,j . The adversary, and thus
the meta-reduction M, is now supposed to output another valid message-signature pair. To do so, M
first checks wether is has already stored such a pair for the transmission (pki,j ,msg1i,j) is the list L,
i.e., if (i, h, pki,j ,msg1i,j , m

0
i,h,�

0
i,h) 2 L for some h < j. In this case, M returns the tuple (mi,j ,�i,j)

(which is the pair obtained through a “normal” execution) together with the pair (m0
i,h,�

0
i,h) (which

is the pair derived by rewinding the reduction) to R and continues the simulation. (This is consistent
with the adversary’s reply as in such rows the magic adversary too obtains identical answer from ⌃aug.)

Assume that M does not find such an entry in L. The meta-reduction M then searches through
all communications in this row to find the first matching round t  j where the adversary M received
(pki,j ,msg1i,j), i.e., it searches for the tuple (t, pki,j ,msg1i,j). It then freezes the simulation of R and
branches into a subroutine that executes a copy of R for the same state before receiving the second
message msg2 of the protocol in this execution, i.e., it rewinds the copy of R to time t.

In the following we omit the index of the row since it is fixed and because it simplifies the notation.
For the subprogram the meta-reduction repeats the following steps until M is able to derive another
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message-signature pair. The meta-reduction M keeps on rewinding the reduction (and thus the
signature issuing protocol) to the point where the user algorithm U computes the second message
msg2h for the h-th execution. For the `-th rewinding, it selects an independent random message m

`
h

from {0, 1}n together with some randomness r
`
h and continues the signature issuing protocol in the

role of an honest user algorithm with R. Observe that M has rewound R to the point where the user
algorithm received (pkj ,msg1j), thus the first message and the public key remain unchanged. Since
the reduction may have continued with other executions (a, b), we use the same values ma,b, ra,b as
before in order to guarantee a consistent simulation. The meta-reduction starts with next loop if it
does not find another valid pair in this execution, i.e., if this execution does not yield a valid pair for
the same first transmission (pkj ,msg1j).

After M has successfully derived a second message-signature pair (m0
h,�

0
h) in row i, it jumps back

into the main execution (to the point where R has sent the third message msg3 and the honest user
algorithm has derived a valid message signature pair (mi,j ,�i,j)), and returns both message-signture
pairs (mi,j ,�i,j),(m0

i,j ,�
0
i,j) to R. It stores the tuple (i, h, pki,h,msg1i,j , m

0
i,h,�

0
i,h) in L and continues

the simulation. When the reduction outputs a putative solution x
0 to y, then the meta-reduction also

stops with output x
0.

Running Time of the Meta-Reduction M. We first show that the meta-reduction M has an
expected polynomial running time Time(M), despite the possibly infinitely many loops. This follows
by a standard argument.

Let ✏i,j denote the conditional probability that we successfully find a valid signature in execution
(i, j) and that this is the first successful execution in this row for the transmission pki,j ,msg1i,j (in
any other case the meta-reduction finds a valid entry in the list L and does not enter the loop phase
at all). Here, we condition on the randomness of the reduction and all other fixed message-signature
values (such that the probability is only over the choice of mi,j , ri,j).

Then, it takes another expected 1/✏i,j repetitions to find the second pair, such that for any i, j

the expected number of loops (including the main execution and given arbitrary other fixed values) is
1 + ✏i,j/✏i,j = 2. Note that this analysis is under the assumption that we have a restricted resetting
scheduling and never run into nested branches. Since each loop thus takes polynomial time on the
average only and the simulation of the reduction is polynomially bounded, the claim follows.

Pruning the Meta-Reduction. Recall that our goal is to show that the probability that the
reduction R still succeeds when communicating with M instead of A. For an algorithm Z let Succ(Z)
be the event that V (x0, y) = 1 for y  I(1n), x0  R

Z(y). Then our goal is to show that

Prob[Succ(M)] := Prob
⇥
y  I(1n), x0  R

M(y) : V (x0, y) = 1
⇤
6⇡ 0

is non-negligible (given Prob[Succ(A)] 6⇡ 0). We now prune the meta-reduction in the simulation above
in the sense that in each loop phase our meta-reduction Mr(n) stops after at most r(n) repetitions
(and aborts if it has not found a second pair). The polynomial parameter r(n) will be chosen later.

We first analyze the success probability of Mr(n). Clearly,

Prob[Succ(M)] � Prob
⇥
Succ(Mr(n))

⇤

and it therefore su�ces to show that the reduction’s success probability when interacting with the
pruned meta-reduction Mr(n) is non-negligible. Let Boundr(n) denote the event that in each execution
M rewinds R at most r(n) times. We then divide the success probability Prob[Succ(M)] into the
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case where M rewinds the reduction R more then r(n) times in some loop, and into the other case
where M rewinds the reduction R at most r(n) times for all loops:

Prob[Succ(M)]  Prob
⇥
Succ(M) ^ Boundr(n)

⇤
+ Prob

⇥
¬Boundr(n)

⇤

 Prob
⇥
Succ(Mr(n)) ^ Boundr(n)

⇤
+ Prob

⇥
¬Boundr(n)

⇤

 Prob
⇥
Succ(Mr(n))

�� Boundr(n)

⇤
+ Prob

⇥
¬Boundr(n)

⇤

We now define r(n). According to the assumption that the reduction R with access to the magic
adversary A succeeds with non-negligible probability, let

Prob[Succ(A)] �
1

p(n)

for some polynomial p(n) and infinitely many n’s. Let E [Time(M)] = t(n) be the (expected) polyno-
mial running time of M. Now set

r(n) := 2 · p(n) · t(n).

Using Markov’s inequality we can calculate the probability that the event ¬Boundr(n) happens as

Prob
⇥
¬Boundr(n)

⇤
 Prob[Time(M) � r(n)] 

E [Time(M)]
r(n)


1

2p(n)
.

Particularly, the probability that M rewinds the reduction R more then r(n) times in some execution,
is at most 1

2p(n) .
Comparing the di↵erent success probabilities of R with access to the magic adversary A and to

M, we have for infinitely many n’s:

Prob[Succ(A)]� Prob[Succ(M)]
� Prob[Succ(A)]� Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤
� Prob

⇥
¬Boundr(n)

⇤

�
1
2 · Prob[Succ(A)]� Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤

�
1
2 ·

�
Prob[Succ(A)]� Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤�
.

In the sequel we assume towards contradiction that Prob
⇥
Succ(Mr(n))

�� Boundr(n)

⇤
is negligible. We

again use transcript-independence of signatures to derive a contradiction.

Description of Adversary S
⇤
trans. In order to derive a contradiction we build a successful attacker

S
⇤
trans against the transcript-independence of signatures. This adversary works similar to the previously

described adversary S
⇤
trans in the proof of Theorem 4.7. The di↵erence consists in combining the

experiment trans-indBS
S⇤,⌃(n) (where only two executions take place) and the meta-reduction (where

many interactions take place). To overcome the di↵erence the adversary picks a random subroutine
call k among all at most q

2 ones and tries to insert the data provided by its experiment trans-indBS
S⇤,⌃(n)

in one of the at most r(n) repetitions, which Mr(n) makes to find the second message-signature pair.
More formally, in a first step the adversary S⇤trans computes an instance y  I(1n) of a cryptographic

problem P and selects a random index k 2 {1, . . . , q
2
}. It proceeds with the black-box simulation of

the reduction R which takes the instance y as input. During the simulation of R adversary S
⇤
trans

maintains a copy of Mr(n) and mainly uses this algorithm to compute the answers.
Only in the first k subroutine calls of Mr(n) (in which the meta-reduction loops to compute

the second pair) algorithm S
⇤
trans diverges from Mr(n)’s strategy as follows. For the first k � 1 of
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the runs in which Mr(n) branches into the extraction procedure for execution (i, j), adversary S⇤trans

uses its oracle ⌃ to compute a signature �
⇤
i,j for an independent random message m

⇤
i,j . It stores

(i, j, pki,j ,msg1i,j , m
⇤
i,j ,�

⇤
i,j) in L and uses this message-signature pair instead and ignores the meta-

reduction’s pair (if it finds one). Another exception is the way the answers for the k-th subprogram
execution are derived. Here the adversary S⇤trans behaves as follows. Let (pki,j ,msg1i,j) be the data ini-
tially sent by the reduction in this execution. Adversary S⇤trans executes experiment trans-indBS

S⇤,⌃(n) us-
ing R, i.e., S⇤trans uses the public key sent by R as his public key during the experiment trans-indBS

S⇤,⌃(n).
It selects two random messages m

0
�1, m

0
0 as the challenges and outputs (pk, m

0
�1, m

0
0). The adversary

S
⇤
trans relays the first instances of the signature issuing protocol between R and U and checks whether
U is able to derive a signature. If the signature-derivation check returns c = 0, i.e., indicating that the
user should not be able to generate a valid signature, then S

⇤
trans stops, outputting a random bit b

⇤.
Otherwise, S⇤trans proceeds with the simulation as follows. For the other signature generation for m

0
0,

adversary S
⇤
trans guesses how many rewindings (of R) are necessary in order to derive another pair.

For this, it selects a random index t 2 {1, . . . , r(n)} and computes t� 1 random messages m
` as well

as t� 1 random strings r
` for ` = 1, 2, . . . , t� 1. During the `-th repetition for ` < t, adversary S⇤trans

executes an instance of the user algorithm U using the coins r
` as well as the message m

`. If one of
these t� 1 instances already yields a valid signature, then S

⇤
trans aborts and outputs a random bit b

⇤

as its final output.
Otherwise, at the beginning of the t-th rewinding (in which S⇤trans expects to generate a signature

successfully), the adversary forwards msg1i,j to the external user instance (holding key pki,j and
message m

0
b) in experiment trans-indBS

S⇤,⌃(n) to receive an answer msg2. The meta-reduction uses this
answer in all executions in this row i with first transmission pki,j ,msg1i,j . Additionally, in all these
executions (except for (i, j)) the adversary runs the signature-derivation checks to see if an earlier
execution would yield a valid signature. If any of these checks returns c = 1, i.e., that the user should
be able to generate a valid signature, the S⇤trans immediately stops with a random output bit b

⇤. In
any other case, the adversary returns ? to the reduction as the reply to msg3.

For execution (i, j) the adversary takes the reduction’s answer msg3 and forwards it to the external
user instance. If the interaction with the external user instance does not yield a valid signature (or,
more generally, if both �

0
�1,�

0
0 are invalid), then S

⇤
trans stops outputting a random bit b

⇤. Otherwise,
it returns to R the message-signature pairs (mi,j ,�i,j , m

0
1,�

0
1), where mi,j ,�i,j have been generated

during the first execution and m
0
0,�

0
0 has been derived either with the help of ⌃ or through the

interaction with U in experiment trans-indBS
S⇤,⌃(n).

We remark that, for each valid execution, S⇤trans also enters the rewind phases and seeks a second
message-signature pair in r(n) loops. If the meta-reduction fails to find such a pair in any of these
rewinding steps then we let S⇤trans immediately abort, outputting a random bit b

⇤. If no premature
abort happens then, eventually, the reduction outputs a putative solution x

0 for a cryptographic
problem P . The final output of S⇤trans (if it has not aborted before) is V (x0, y)� 1.

Analysis of Adversary S
⇤
trans. To analyze the success probability of S⇤trans we define the following

hybrid oracles. Consider a run of the reduction with q
2 oracles, but where we use the strategy of

the meta-reduction Mr(n) in the all executions, except that we use the magic adversary in the first
k subprocedure executions to replace the second pair (or to find a pair at all if Mr(n) has not found
one). We denote this “oracle matrix” by Hk. Accordingly, we write Succ(Hk) for the event that the
reduction R successfully outputs a solution x

0 to y  I(1n) when interacting with such a hybrid oracle
set.

By construction we have identical behavior for the extreme hybrids to the adversary’s attack and
the execution of the meta-reduction, respectively, where we use in the former case the fact that A
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computes the pairs (m, r) with the help of the q-wise independent hash function (just as Mr(n) picks
fresh random values):

Prob
⇥
Succ(Hq2)

⇤
= Prob[Succ(A)] and Prob[Succ(H0)] = Prob

⇥
Succ(Mr(n))

⇤
.

We will now set this in relationship to the success probability of S⇤trans predicting b with its output b
⇤.

First, we collect the cases that S⇤trans aborts prematurely, returning a random bit b
⇤. This happens

if event ¬Boundr(n) occurs, if the adversary’s guess t for the right repetition has been wrong (event
¬Guess), or if the guess has been right but the signature-derivation check returns a wrong answer,
saying that the user was able to compute a signature while he was not (event ¬SDCh+). Similarly,
the simulation may be erroneous if the check returns that the user is not able to derive a signature
but he actually is (event ¬SDCh�).

It is easy to see that the probability for event ¬SDCh+
_ ¬SDCh� is negligible by the signature-

derivation check; else one can easily build a successful attacker from S
⇤
trans against this property. Hence,

this simulation error can only a↵ect the adversary’s success probability for predicting b negligibly. From
now on we therefore implicitly condition on the event SDCh+

^ SDCh� that all signature-derivation
checks return the right answer.

For the probability of predicting b we now take into account the cases that events Boundr(n) and
Guess do not hold (in which case S⇤trans returns a random bit b

⇤ and succeeds with probability 1
2), and

derive:

Prob[ b = b
⇤]

= Prob
⇥
b = b

⇤ ��¬Boundr(n) _ ¬Guess
⇤
· Prob

⇥
¬Boundr(n) _ ¬Guess

⇤

+ Prob
⇥
b = b

⇤ �� Boundr(n),Guess
⇤
· Prob

⇥
Boundr(n) ^ Guess

⇤

= 1
2 ·

�
1� Prob

⇥
Boundr(n) ^ Guess

⇤�

+ Prob
⇥
Boundr(n) ^ Guess

⇤
· Prob

⇥
b = b

⇤ �� Boundr(n),Guess
⇤

= 1
2 + Prob

⇥
Boundr(n) ^ Guess

⇤
·
�
Prob

⇥
b = b

⇤ �� Boundr(n),Guess
⇤
�

1
2

�

Next, note that Prob
⇥
Guess

�� Boundr(n)

⇤
= 1/r(n), because given that we always find another message-

signature pair in r(n) loops we pick the right one to insert the data with this probability. Since we
also have Prob

⇥
Boundr(n)

⇤
� 1�1/2p(n) we conclude that Prob

⇥
Boundr(n) ^ Guess

⇤
is non-negligible.

But then it su�ces to show that the probability of predicting b under these two conditions is bounded
away from 1

2 by a non-negligible amount. This follows by refining the view with respect to bit b:

Prob
⇥
b = b

⇤ �� Boundr(n),Guess
⇤
�

1
2

= Prob[ b = 1] · Prob
⇥
b = b

⇤ �� Boundr(n),Guess, b = 1
⇤

+ Prob[ b = 0] · Prob
⇥
b = b

⇤ �� Boundr(n),Guess, b = 0
⇤
�

1
2

= 1
2 ·

�
1� Prob

⇥
b
⇤ = 0

�� Boundr(n),Guess, b = 1
⇤�

+ 1
2 · Prob

⇥
b
⇤ = 0

�� Boundr(n),Guess, b = 0
⇤
�

1
2

= 1
2 ·

�
Prob

⇥
b
⇤ = 0

�� Boundr(n),Guess, b = 1
⇤

� Prob
⇥
b
⇤ = 0

�� Boundr(n),Guess, b = 0
⇤�
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Taking the random choice k of S⇤trans into account we obtain:

Prob
⇥
b
⇤ = 0

�� Guess,Boundr(n), b = 1
⇤
� Prob

⇥
b
⇤ = 0

�� Guess,Boundr(n), b = 0
⇤

=
q2X

k0=1

�
Prob

⇥
b
⇤ = 0 ^ k = k0

�� Guess,Boundr(n), b = 1
⇤

�Prob
⇥
b
⇤ = 0 ^ k = k0

�� Guess,Boundr(n), b = 0
⇤�

= 1
q2 ·

q2X

k0=1

�
Prob

⇥
b
⇤ = 0

�� Guess,Boundr(n), b = 1, k = k0
⇤

�Prob
⇥
b
⇤ = 0

�� Guess,Boundr(n), b = 0, k = k0
⇤�

The probability that S⇤trans outputs b
⇤ = 0, given that the guess is right, the number of repetitions is

bounded and b = 1 (i.e., S⇤trans forwards the signature generated by ⌃) and that k = k0, equals the
probability for Succ(Hk0) (under the condition Boundr(n)). Similarly, under these conditions and that
b = 0, i.e., that S⇤trans inserts the communication with the user from experiment trans-indBS

S⇤,⌃(n), the
probability for b

⇤ = 0 is identical to the one for Succ(Hk0�1) (under the condition Boundr(n)). The
latter also relies on Corollary 4.5 (page 10) that ⌃ succeeds in producing a signature with overwhelming
probability if the first execution is valid, because it is guaranteed that S⇤trans obtains the two signatures
from the user instances in the experiment (if ⌃ would fail then the transcript-independence experiment
would return ? for all three executions). We ignore this negligible error in Corollary 4.5 for simplicity
and conclude that

Prob
⇥
b
⇤ = 0

�� Boundr(n),Guess, b = 1
⇤
� Prob

⇥
b
⇤ = 0

�� Boundr(n),Guess, b = 0
⇤

= 1
q2 ·

q2X

k0=1

�
Prob

⇥
Succ(Hk0)

�� Boundr(n)

⇤
� Prob

⇥
Succ(Hk0�1)

�� Boundr(n)

⇤�

= 1
q2 ·

�
Prob

⇥
Succ(Hq2)

�� Boundr(n)

⇤
� Prob

⇥
Succ(H0)

�� Boundr(n)

⇤�

= 1
q2 ·

�
Prob

⇥
Succ(Hq2)

⇤
� Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤�

= 1
q2 ·

�
Prob[Succ(A)]� Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤�
.

where we used the fact that the success probability for the case Hq2 is independent of event Boundr(n)

(because in this experiment all second message-signature pairs are provided by oracle ⌃, independently
of whether the pruned meta-reduction finds a second pair). Plugging this latter term into the previous
equation for Prob[ b = b

⇤], we obtain

Prob[ b = b
⇤]

�
1
2 + 1

2r(n)q2(n) ·

⇣
1� 1

2p(n)

⌘
·
�
Prob[Succ(A)]� Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤�
.

By assumption, the probability for a success of R with the magic adversary is non-negligible, whereas
for the pruned meta-reduction (under condition Boundr(n)) it drops to negligible. But then we have
derived a successful attacker against the transcript independence of signatures. It follows that our
assumption Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤
being negligible must have been wrong. Since

Prob
⇥
Succ(Mr(n))

⇤
� Prob

⇥
Boundr(n)

⇤
· Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤

�

⇣
1� 1

2p(n)

⌘
· Prob

⇥
Succ(Mr(n))

�� Boundr(n)

⇤
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it follows that the success probability of Mr(n) must be non-negligible, too. Also note that Mr(n)

gives us a solver running in fixed polynomial time. ⇤

Let us re-capture the step where we used the fact that our scheme has three moves only. For this
we look at the construction of S⇤trans, showing that any significant di↵erence in the reduction’s success
probability when communicating with A or with Mr(n) can be used to break transcript-independence
of signatures. This adversary uses the external procedures ⌃ and U to derive the second pair (in one
of the r(n) repetitions). In particular, the external user algorithm cannot be reset according to the
transcript-independence experiment.

Fortunately, since the blind signature scheme has only three moves we can simply insert the same
second message of the external user in all executions with the same pk,msg1. In other words, resets
are easy to simulate. If the blind signature scheme had four or more moves, however, the reduction
could reset each execution at di↵erent points, possibly extracting some knowledge about the message
and/or the randomness of the user. Adversary S⇤trans could in general not simulate these steps without
resetting the external user algorithm.

6 Conclusion

We have shown that for the blind signature schemes of Chaum [Cha83] and of Pointcheval-Stern [PS00]
finding security reductions to any non-interactive cryptographic problem in the standard model is hard.
This class of cryptographic problems is very broad in the sense that it contains candidates like RSA
and collision-resistant hash functions, and also any combination thereof. This also allows us to make
stronger infeasibility claims compared to previous results using meta-reductions in other areas.

Concerning optimality of our results we remark that:

• Our result can be transfered to the computational blindness case (under additional stipulations),
thus also ruling out many approaches to revert to computationally blindness to circumvent the
results for the statistical schemes.

• Enlarging the class of cryptographic problems to interactive ones is too demanding: unforgeabil-
ity of any blind signature scheme can indeed be securely reduced to an interactive problem in
the standard model by simply assuming that the scheme is unforgeable. It is, however, unclear if
and how decisional problems can be subsumed under our class of non-interactive (computational)
problems.

• Extending the result to protocols with more moves is impossible in light of Okamoto’s scheme
[Oka06] with four moves in the standard model, based on a non-interactive assumption.

Hence, our result fits well into our current knowledge about constructing blind signatures and shows
close boundaries for potential improvements on the e�ciency or assumptions.
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A Impossibility Result for Computationally Blind Signature Schemes

Here we extend our result to computationally blind signature schemes.

A.1 Preliminaries

We augment the definition of blindness by allowing the malicious signer S⇤ to invoke an oracle ⌃. As
before, we note that ⌃ will break unforgeability and the definition below says that blindness should
still hold, even if one can forge signatures. As an example, consider Chaum’s scheme, where perfect
blindness is preserved even if one can break RSA.

Definition A.1 (Blind Signature Scheme Relative to an Oracle) A secure blind signature scheme
BS = (KG, hS,Ui ,Vf) is called computationally blind relative to an oracle ⌃ if, for any e�cient algo-
rithm S

⇤ working in modes find, issue and guess the probability that the following experiment BlindBS
S⇤

evaluates to 1 is negligibly close to 1/2, where

Experiment BlindBS
S⇤,⌃(n)

(pk, m0, m1, stfind) S
⇤,⌃(find, 1n)

b {0, 1}
stissue  S

⇤h·,U(pk,mb)i1,h·,U(pk,m1�b)i1,⌃(issue, stfind)
and let �b,�1�b denote the (possibly undefined) local outputs
of U(pk, mb) resp. U(pk, m1�b).
set (�0,�1) = (?,?) if �0 = ? or �1 = ?

b
⇤
 S

⇤,⌃(guess,�0,�1, stissue)
return 1 i↵ b = b

⇤.
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Key-Validity Checks. For our impossibility result we need an additional requirement on the blind
signature scheme which allows to check publicly whether a maliciously chosen public key has a matching
secret key (we call this a key-validity check). We need this property because our result is based on a
(di↵erent) generic forgery oracle ⌃. In the statistical case the forgery oracle has basically searched for
a collision for the transcript, but in the computational case such collisions may not even exist. Hence,
instead we let ⌃ now compute a secret key from the public key and then run an execution between
the honest user and the honest signer for this secret key. The key-validity check tells us whether this
strategy succeeds or not.

Definition A.2 (Key-Validity Check) A blind signature scheme BS allows (computational resp. sta-
tistical) key-validity checks if there exists an e�cient algorithm KVCh such that for any (e�cient
resp. unbounded) algorithm S

⇤ working in modes find and issue the probability that the following ex-
periment KeyValCheckBS

S⇤,KVCh evaluates to 1 is negligible, where

Experiment KeyValCheckBS
S⇤,KVCh

(pk, m, st) S
⇤(find, 1n)

c KVCh(1n
, pk)

return 1 if
c = 1 but there does not exist sk

0 with (sk0, pk) 2 [KG(1n)], or
c = 0 but there exists sk

0 with (sk0, pk) 2 [KG(1n)].

If the above holds even if S⇤ gets access to an oracle ⌃ then we say that the scheme has (computational
resp. statistical) key-validity checks relative to ⌃.

The schemes of Pointcheval-Stern and of Boldyreva, for example, allow to implement such a key-
validity check by verifying that the discrete-log groups are admissible (e.g., prime order sub group)
and that the values are proper group elements.

Generic Forgery Oracle. To define our generic forgery oracle ⌃c allowing A to break unforgeability
we first outline the idea for the case of Chaum’s blind signature scheme. Namely, assume that the
RSA-exponent e in Chaum’s scheme has a unique matching secret exponent d. Algorithm ⌃(pk,m)
then computes the inverse exponent d to the RSA key (N, e) and sets � = H(m)d mod N for the
hash function description H in the public key. Note that the message deterministically identifies the
signature, and the distribution of ⌃’s output is therefore identical to the one of an honest user.

The above example can be generalized to any blind signature scheme and the following generic
forgery oracle (which only depends on the blind signature scheme in question):

Definition A.3 (Generic Forgery Oracle) For a blind signature scheme BS the generic forgery
oracle ⌃c = (⌃c

sk,⌃
c
ex) consists of two algorithms, where

Signing Key Generation. Algorithm ⌃c
sk on input (pk, m) enumerates all possible random inputs to

KG which lead KG for input 1n to produce pk. The oracle uniformly picks one of those random
strings and returns the corresponding secret key sk⌃c which KG outputs for input 1n and for this
string. If no such string exists, then ⌃c

sk returns ?.

Execution. Algorithm ⌃c
ex takes as input pk, m and a key sk⌃c and runs an execution between S(sk⌃c)

and an instance of the honest user U(pk, m). This eventually yields a signature � (possibly � = ?)
output by the user, and ⌃c

ex then returns �.
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We note that any algorithm with oracle access to ⌃c can call each suboracle individually. Vice versa,
when calling ⌃c with (pk, m) we assume that ⌃c internally first executes ⌃c

sk(pk, m) to derive sk⌃c

and then returns ⌃c
ex’s answer for input pk, m, sk⌃c . Additionally, by the completeness of the blind

signature scheme the forgery oracle always returns a valid signature when called for a public key
generated by the honest signer.

Transcript Independence. We briefly discuss that transcript-independence in the computational
case (for our generic forgery oracle here) holds because of the blindness relative to ⌃c. We remark
that, since ⌃c does not depend on the transcript at all, the prerequisites do not include signature
derivation checks:

Proposition A.4 Every blind signature scheme, which is blind relative to the generic forgery oracle
⌃c, also has computational transcript-independent signatures (with respect to ⌃c).

Proof. The proof carries over from the statistical case (Proposition 4.4) with slight changes. So assume
that there exists a signer S⇤trans in experiment transc-indBS

S⇤trans,⌃
(n) with the generic forgery oracle ⌃c

which outputs b
⇤ = b with non-negligible probability beyond 1/2. Then we construct an adversarial

controlled signer S⇤blind against the blindness (with oracle access to ⌃c) as follows. Algorithm S
⇤
blind

invokes S⇤trans(init, 1n) to get (pk, st1, m�1, m0) and also runs ⌃c
sk(pk,m0) to get sk⌃c . It outputs

(pk, (st1, sk⌃c), m0, m0) as the initial output in the blindness experiment.
In the following S⇤blind impersonates the honest user U for input (pk,m�1) in the left user instance

of S⇤trans by following the user algorithm. In the right user instance for the transcript-independence
adversary S⇤blind relays all the communication with its first external user instance (for input (pk, m0)).
It also invokes the second user instance (also for (pk, m0)) and uses algorithm S(sk⌃c) for key sk⌃c to
answer the user.

Algorithm S
⇤
blind eventually obtains (m0,�0, m0,�1) (without knowing if �0 origins from the com-

munication between S
⇤
trans and the user, or from the internally simulated algorithm S(sk⌃c) and the

user). If �0 = ? then it also sets ��1  ?. In any case it forwards (m�1,��1, m0,�0) to S⇤trans and
returns this algorithm’s output b

⇤ as its decisional bit.
For the analysis observe that for b = 0 in the blindness experiment the data provided to S

⇤
trans

corresponds exactly to the case b = 0 there. Also, the case b = 1 in the blindness experiment is
exactly like the case b = 1 in the transcript-independence experiment, because the generic forgery
oracle also runs an instance between S(sk⌃c) and U(pk,m0). This implies that if S⇤trans succeeds with
non-negligible probability over 1/2, then S

⇤
blind also succeeds with non-negligible probability bounded

away from 1/2. ⇤

Pseudorandom Functions. In order to prove our impossibility result, we take advantage of pseu-
dorandom functions, similar to our deplyoment of q-wise independent hash functions. To this end we
define pseudorandom functions in the presence of an oracle ⌃c and magic adversaries with access to
⌃c. In the following let ⇢(n) be the length of the randomness used by an honest user for an execution
of the signing protocol. As we will later view ⌃c to be an integral part of the magic adversary and
thus let the adversary provide the randomness s 2 {0, 1} (n) required by oracle ⌃c, we also grant the
distinguisher in the pseudorandom experiment here access to the augmented (deterministic) oracle
⌃c,aug which now takes pk, m and randomness s as input and returns �:

Definition A.5 (Pseudorandom Function Relative to Oracle) Let Rn be the set of all func-
tions f : {0, 1}⇤ ! {0, 1}2n+⇢(n)+ (n), ⌃ be an oracle and PRF be an algorithm which takes as input
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k 2 {0, 1}n and x 2 {0, 1}⇤ and returns a value of length 2n + ⇢(n) +  (n). Then PRF is called a
pseudorandom function relative to oracle ⌃aug if for every e�cient algorithm D the following holds:

Prob
h
D

⌃aug,PRF(k,·)(1n) = 1
i
� Prob

h
D

⌃aug,f(·)(1n) = 1
i
⇡ 0,

where the probability in the first case ist taken over the internal coin tosses of D and over the choice of
k  {0, 1}n, and in the second case over the internal coin tosses of D and over the choice of f  Rn.

An equivalent way of defining pseudorandom functions (relative to oracles) is to give the distin-
guisher (in addition to ⌃aug) either access to q functions PRF(k1, ·), . . . ,PRF(kq, ·) for independent
keys k1, . . . , kq, or to q independent random functions f1, . . . , fq. A standard hybrid argument shows
that for polynomial q = q(n) a function is pseudorandom according to this definition if and only if it
is pseudorandom according to Definition A.5 above (even in presence of ⌃aug). Below we will make
use of this version with multiple oracles.

The New Magic Adversary. Given the pseudorandom function relative to an oracle we augment
our “magic” adversary through access to a pseudorandom function PRF. Informally, the adversary
again runs the issuing protocol with the signer in the role of the honest user once. However, it now
generates the message (and the user’s randomness) as the result of the pseudorandom function to the
public key and the first message of the signer. Again, in the case that the single executions yields a
valid signature, then the magic adversary here also creates another valid signature via ⌃c,aug. Since we
view the oracle ⌃c as a subroutine of the magic adversary the randomness for ⌃c is now also provided
explicitly by the adversary and derived through the pseudorandom function (we note that the length
 (n) of this randomness is only polynomial by construction of the generic forgery oracle):

Definition A.6 (Magic Adversary with Access to PRF,⌃c) The magic adversary APRF for in-
put pk and access to the generic forgery oracle ⌃c,aug and communicating with an oracle hS(sk), ·i1

works as described in the following steps:

select a key k for the pseudorandom function PRF
run an execution hS(sk),U(pk, m0

0; r00)i in the role of an honest user, where
(m0

0, m
0
1, r

0
0, s

0
0) PRF(k, pk||msg1) is generated as the result of the

pseudorandom function applied to the public key pk and the first
message msg1 of S; let �00 denote the resulting signature.

if Vf(pk, m0
0,�

0
0) = 1 then let �01  ⌃c,aug(pk, m0

1; s00) else set �00  ?,�
0
1  ?

return (m0
0,�

0
0, m

0
1,�

0
1)

It follows again from the completeness of BS together with the construction of the generic forgery
oracle (which works even for pseudorandom input instead of truly random coins) that the magic
adversary succeeds in the unforgeability experiment with probability negligibly close to 1.

We note that, if we only consider reductions with an a-priori fixed number q of resets in each
row, then we could let the adversary use its randomness to implement q-wise independent hash func-
tions instead of pseudorandom functions (similar to [BL02] and our result for statistical blindness).
However, in case of computationally (but not statistically) blind signature schemes relative to ⌃c,aug,
pseudorandom functions relative to ⌃c,aug exist anyway and therefore do not require an additional
assumption. This follows as we then have one-way functions relative to ⌃c,aug [Gol90] and can apply
the (relativizing) constructions [GGM86,HILL99] to derive pseudorandom functions relative to ⌃c,aug.
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A.2 Impossibility Result

The following theorem extends our impossibility result to the case of computational blind signature
schemes.

Theorem A.7 Let BS be a three-move blind signature scheme, which is blind relative to the generic
forgery oracle ⌃c and which has (computational) signature-derivation checks and (computational) key-
validity checks relative to ⌃c. Let PRF be a pseudorandom function relative to ⌃c,aug. Then there is
no resetting (with restricted cross-resets) black-box reduction from unforgeability of the blind signature
scheme BS to a hard non-interactive problem.

Note again that such pseudorandom functions exist if the blind signature scheme is computationally
but not statistically blind.

The high-level idea of the proof of Theorem A.7 is similar to the proof of Theorem 5.3 with the
di↵erence that we investigate computational blind signature schemes and that the reduction is allowed
to reset the adversary as often as required (and not a fixed number). In order to handle resetting attacks
we divide the proof in two parts. In the first part we modify the magic adversary A by substituting
the pseudorandom function through a random function and show that this di↵erence does not change
the success probability of the reduction non-negligibly. This makes the resetting executions essentially
independent and facilitates the simulation of the reduction through the meta-reduction.

In the main step of the proof, we then construct a meta-reduction M which mimics the adversarial
behavior (without the help of ⌃c) by rewinding the reduction R as described in the proof of Theorem
5.3. The di↵erence of both constructions consists in the last step of the meta-reduction. When M has
obtained two message-signature pairs, then M runs the key-validity check. In the case that this test
evaluates to 0, i.e., that ⌃c should not be able to output a corresponding secret key and the magic
adversary thus fails to produce a forgery, then M responses with (�0,�1) = (?,?). Otherwise, if the
test outputs 1, then M forwards both signatures to R. We again show that M’s behavior and the
one of the magic adversary are indistinguishable to R by the transcript independence of signatures.

Proof (of Theorem A.7). The proof consists of the following steps. We first show that we can safely
replace the pseudorandom function used by A though a truly random function. Then, we describe the
meta-reduction M with expected polynomial running time. To ensure fixed polynomial running time
we next prune the meta-reduction to Mr(n). We prove that the success probability of this pruned
meta-reduction is close to the one of the reduction communicating with A, yielding our desired e�cient
solver for the underlying problem.

Replacing PRF by Random Functions. Let APRF be the magic adversary with access to the
pseudorandom function PRF and to the generic forgery oracle ⌃c,aug. We first modify APRF to Af by
replacing the pseudorandom function through a random function f in each row, chosen at random
when initialized. In particular, di↵erent copies with the same random string rely on the same random
function. We argue that this does not make a non-negligible di↵erence for the reduction R.

Assume towards contradiction that the reduction R outputs a valid solution x
0 with non-negligible

probability if R receives message-signature pairs (m0,�0), (m1,�1) from the magic adversary APRF

(i.e., with access to PRF), but succeeds only with negligible probability if the message-signature pairs
are generated by the magic adversary Af (i.e., with access to random functions). We then construct a
distinguisher D who exploits this di↵erence in these probabilities to successfully distinguish functions
from PRF and random functions. Here we use the version with multiple independent oracles, discussed
after Definition A.5.
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The distinguisher D has access to ⌃c,aug and to q function oracles F1, . . . ,Fq which accept binary
strings as input and return strings of length 2n + ⇢(n) +  (n). The function oracles either compute
independent pseudorandom functions PRF(ki, ·) or truly random functions f1, . . . , fq. The distinguisher
works as follows. It first generates an instance y  I(1n) of a cryptographic problem P . It starts
to simulate the reduction R on input y, simulating the adversary copies in row i as described in
Construction 5.2, but using the function oracle Fi instead of the pseudorandom function. When the
reduction finally outputs an alleged solution x

0 the distinguisher D returns b
0
 V (x0, y).

According to our assumption that the reduction R only succeeds with negligible probability if the
message-signatures pairs are generated by Af (i.e., by the magic adversary A with access to truly
random functions) we have

Prob
⇥
y  I(1n), x0  R

Af (y) : V (x0, y) = 1
��Af

⇤
⇡ 0.

By construction this is identical to the probability that the distinguisher D returns 1, given that the
function oracles F1, . . . ,Fq are given by random functions. On the other hand,

Prob
⇥
y  I(1n), x0  R

APRF(y) : V (x0, y) = 1
��APRF

⇤
6⇡ 0.

and this probability equals the probability that D outputs 1 if the function oracles implement pseu-
dorandom functions. Overall,

Prob
h
D

⌃c,aug,PRF(k1,·),...,PRF(kq ,·)(1n) = 1
i
� Prob

h
D

⌃c,aug,f1,...,fq(1n) = 1
i
6⇡ 0.

But this contradicts the pseudorandomness of PRF.
In conclusion, the magic adversary with access to the truly random function now can be viewed

as follows. Each time the reduction sends a new pair (pk,msg1) in a row the adversary essentially
creates the message-signature pairs independently. For di↵erent rows this even holds for the same
pk,msg1 as the random function is independent from the ones for the other rows. We can now also
switch from ⌃c,aug to ⌃c as long as we guarantee that ⌃c gives identical answers for executions with
the same pk,msg1; this can be easily implemented by table look-ups.

The Final Step. Given that we can again assume independent random choices for the adversary
we next discuss the necessary changes to make the proof of Theorem 5.3 go thorugh in this case.

The meta-reduction M here essentially behaves as the one in the proof of Theorem 5.3, but di↵ers
in the last step for each loop phase. Namely, after M has computed two message-signature pairs,
it runs the key-validity check on the corresponding public key. If this check outputs 0, then M sets
�
0
0,�

0
1  ?. Otherwise, it forwards both signatures to R.

The analysis of the meta-reduction is almost identical to the analysis of the meta-reduction in
the proof of Theorem 5.3. We again show that any noticeable di↵erence for the reduction when
communicating with the magic adversary or with the meta-reduction yields a contradiction to the
transcript-independence (but now for the computational case). The only di↵erence is that, in that
proof we referred to Corollary 4.5 to ensure that a failing ⌃c in the transcript-independence experiment
does not prevent the adversary S

⇤
trans from obtaining the two signatures the meta-reduction would

derive. Here, running the key-validity check by the meta-reduction provides the same guarantee.
Only this time we let the meta-reduction artificially fail then, and the conclusion therefore remains
true. ⇤
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