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Abstract. Sanitizable signature schemes, as defined by Ateniese et al. (ESORICS 2005), allow a signer to
partly delegate signing rights to another party, called the sanitizer. That is, the sanitizer is able to modify
a predetermined part of the original message such that the integrity and authenticity of the unchanged
part is still verifiable. Ateniese et al. identify five security requirements for such schemes (unforgeability,
immutability, privacy, transparency and accountability) but do not provide formal specifications for these
properties. They also present a scheme that is supposed to satisfy these requirements.

Here we revisit the security requirements for sanitizable signatures and, for the first time, present a

comprehensive formal treatment. Besides a full characterization of the requirements we also investigate

the relationship of the properties, showing for example that unforgeability follows from accountability.

We then provide a full security proof for a modification of the original scheme according to our model.

1 Introduction

Sanitizable signature schemes, introduced by Ateniese et al. [ACdMT05] and, in a slightly different vein,
by Steinfeld et al. [SBZ01] and Miyazaki et al. [MSI+03], allow a signer to delegate signature rights in a
controlled way. Namely, the signer can determine parts of the message which a designated party, the sanitizer,
can later modify but such that the authenticity and integrity of the remaining parts is still guaranteed. In
particular, even the sanitizer should not be able to change inadmissible parts of the message and produce a
valid signature for such illegitimate transformations.

A straightforward application of sanitizable signatures are medical data which should be published in an
anonymized but authentic form. Suppose for example that for infectious disease surveillance a hospital is
obliged to report excerpts of their patients medical data like dates of birth, genders etc. to an authority. Yet
other parts of these data can and should be anonymized, e.g., pseudonyms replacing the patients names or
deleting psychiatric information.

Ideally, the administrative department of the hospital assembles the requested information from their
records, holding the medical data signed by different health professionals, and sanitizes them without further
interaction with their personnel. At the same time the authenticity and integrity of the dedicated data should
be preserved. Then, clearly, sanitizable signatures in which the hospital acts as a sanitizer provide a solution.
Ateniese et al. [ACdMT05] provide further applications of sanitizable signature schemes, including multicast,
data base outsourcing and secure routing.

Security Requirements. As discussed in [ACdMT05] meaningful sanitizable signatures come with the
usual unforgeability requirement of regular signature schemes:

Unforgeability. It should be infeasible for an outsider (i.e., neither the signer nor the sanitizer) to forge
signatures in the name of the signer or the sanitizer.
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But the introduction of the sanitizing party and its relationship to the signer entail further desirable security
properties. These are:

Immutability. The sanitizer should not be able to produce valid signatures for messages where it has
changed other than the designated parts (this can be thought of as an insider attack).

Privacy. Sanitized messages and their signatures should not reveal the original data (i.e., the parts which
have been sanitized).

Transparency. It should be infeasible to decide whether a message has been sanitized or not. This may
be desirable in applications where one should not be able to discriminate against messages produced
by the sanitizer.

Accountability. A party (the signer or the sanitizer) should not be held responsible for messages origi-
nating from the other party.

While unforgeability can be formalized straightforwardly from the basic case for regular signatures, as it
is done in [ACdMT05], Ateniese et al. remain rather vague when it comes to the other security requirements.
Instead, they introduce technical conditions for the sanitizable signature scheme, aiming to achieve the
requirements above. Besides unforgeability these are indistinguishability —roughly saying that signatures
generated by the signer are computationally independent of the messages— and the property of identical
distributions, saying that the signatures produced by the signer and the sanitizer have identical distributions.
This approach is arguable in several ways.

First, without having a formal definition of the security requirements above it is hard to tell if a signature
scheme with the technical conditions really achieves the desired goals; as always in cryptography, without
a robust security model underneath it is impossible to make precise statements about the hardness of
attacks. Secondly, having a more abstract view on the desirable security requirements (instead of the
scheme’s conditions) facilitates the understanding of their relationships among each other and with other
cryptographic primitives. Finally, trying to achieve the security requirements via technical properties seems
to be exceedingly restrictive and may exclude otherwise viable solutions.

Our Results. In this paper we revisit the aforementioned security requirements and formalize them ac-
cording to common game-based approaches. As part of this, we simplify the unforgeability experiment from
[ACdMT05]. We also make several refinements for accountability. First, we augment the model by new
algorithms Proof and Judge where Proof allows to provide evidence to Judge that a message has been san-
itized. Then we distinguish between sanitizer- and signer-accountability, saying that a malicious sanitizer
resp. signer cannot falsely accuse the other party. The original approach in [ACdMT05] only seems to discuss
our notion of sanitizer-accountability.

Concerning the relationship of the now-defined security requirements we obtain some useful and also
some unexpected results: First, we prove that transparency implies privacy, i.e., any transparent sanitizable
signature scheme is also private and for such schemes there is no need to look at the privacy property
separately. Secondly, we show that the two accountability types together imply unforgeability, which is in
contrast to the position of Ateniese et al. [ACdMT05] who argue that unforgeability implies accountability.
Having a clean model tells us that it is the other way around, and that accountability needs to be considered.

As for the other security properties, immutability, transparency, sanitizer- and signer-accountability we
show that each property is independent of the other ones. That is, for each property we present a sanitizable
scheme which satisfies all the other requirements except for the one in question. Technically we assume that
there are schemes having all properties and then modify the scheme to annihilate the one property. Finally,
we show that unforgeability does not follow from sanitizer- or signer-accountability alone (but only if both
versions of accountability hold simultaneously). This gives us a complete characterization of the relationship
of the notions.

We also revisit the sanitizable signature scheme presented in [ACdMT05] in light of our formal definitions.
We show that a modification of their scheme indeed meets our requirements for immutability, transparency,
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sanitizer-accountability and signer-accountability. This already implies, via our relationship results, that the
scheme is also unforgeable and private and thus a secure sanitizable scheme.

Related Work. As mentioned before, Miyazaki et al. [MSI+03] also use the notion of sanitizable signa-
ture schemes, but refer to a slightly different approach. According to their notion only deletions of message
parts are considered (instead of modifications) and, secondly, the sanitizer is usually not bound to change
designated parts of the message but can decide which portions should be deleted. The basic security proper-
ties of such sanitizable signature schemes are unforgeability and privacy (following the terminology above).
Independently, several similar proposals like content extraction signatures [SBZ01] and redactable signatures
[JMSW02] have been made.

The two approaches for sanitizable signatures and their solutions resemble each other, making the dis-
tinction somewhat obscure. This is especially true since further properties have been added to the models
in subsequent works, like the requirement that the sanitizer’s identity remains hidden [MHI08] in the san-
itizable signature model of [MSI+03], resembling the above notion of transparency. Nonetheless, one can
divide the literature about sanitizable signatures roughly into the works following the approach by Ate-
niese et al., e.g., [KL06, CLM08], and the works based on the approach by Miyazaki et al., including
[IKTY05, MIM+05, IKO+07, MHI08, HHH+08].

We adhere to the notion of sanitizable signature of Ateniese et al. [ACdMT05], covering message modifi-
cations and security requirements like accountability. Some improvements concerning the scheme’s efficiency
have been made [KL06] and some extensions concerning multiple, a-posteriori determined censors have been
suggested [CLM08]. None of these proposals goes beyond the original approach to model the security prop-
erties formally, though. We note that some of the previous works in the vein of Miyazaki et al. [MSI+03]
come with security models, especially for privacy and unforgeability [SBZ01, MHI08, SIT06]. Yet, they often
provide limited security guarantees, like privacy requirements holding for a single message-signature pair
only. In contrast our models allow more sophisticated attacks where for instance privacy should still hold
for multiple message-signature pairs and even if the attacker can ask for further signatures.

Independently of our work, Yuen et al. [YSLM08] also revisit the security of sanitizable signatures, but
focus on new constructions.

2 Preliminaries

In this section we define sanitizable signatures. Like a regular signature scheme a sanitizable signature scheme
allows to sign messages under the secret signer key sksig, generated together with the public verification key
pksig. The signing process itself includes a public key pksan of a designated sanitizer and a description adm

of division into blocks and admissible blocks which the sanitizer is allowed to change with the help of its
secret key sksan. Any such modification takes the original message and signature and some modification
information mod and produces a signature σ′ for the modified message m′.

In the sequel we assume for simplicity that the description adm of admissible blocks defines the block
length t ∈ N and contains a set of block numbers from N which can be changed, and that all messages are
aligned to block length (say, by standard padding techniques). The modification information mod is then a
list of pairs (j, m′[j]) consisting of a block number j and the new content m′[j] for this block. We say that
mod matches adm if all the block numbers in mod are admissible according to adm and the length of the
blocks in mod equals the value in adm. The case of a more general transformation, where the modifications
are modeled as arbitrary algorithms, is straightforward and discussed in Appendix B.

In addition, to settle disputes about the origin of a message-signature pair, an algorithm Proof enables
the signer to produce a proof π that a signature has been created by the sanitizer. The proof π is generated
from a set of previously signed messages. A Judge algorithm then uses the proof π to decide if a valid
message-signature pair (m, σ) has been created by the signer or the sanitizer (the lack of such a proof is
interpreted as a signer origin). We note that Judge is usually only called for valid pairs (m, σ); for invalid
pairs settling the dispute is beyond the scheme’s scope.
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Definition 2.1 (Sanitizable Signature Scheme) A sanitizable signature scheme SanSig consists of seven
efficient algorithms (KGensig, KGensan, Sign, Sanit, Verify, Proof, Judge) such that:

Key Generation. There are two key generation algorithms, one for the signer and one for the sanitizer.
Both create a pair of keys, a private key and the corresponding public key:

(pksig, sksig)← KGensig(1
n), (pksan, sksan)← KGensan(1n)

Signing. The Sign algorithm takes as input a message m ∈ {0, 1}∗, the secret key sksig of the signer, the
public key pksan of the sanitizer as well as a description adm ∈ N × 2N of the block length t and
admissibly modifiable message blocks from {0, 1}t. It outputs a signature (or ⊥, indicating an error):

σ ← Sign(m, sksig, pksan,adm).

We assume that adm is recoverable from any signature σ 6=⊥.

Sanitizing. Algorithm Sanit takes a message m ∈ {0, 1}∗, a signature σ, the public key pksig of the signer
and the secret key sksan of the sanitizer. It modifies the message m according to the modification
instruction mod ⊆ N × {0, 1}t (where t is the block length described in adm) and determines a new
signature σ′ for the modified message m′. Then Sanit outputs m′ and σ′ (or possibly ⊥ in case of an
error).

(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)

Verification. The Verify algorithm outputs a bit d ∈ {true, false} verifying the correctness of a signature
σ for a message m with respect to the public keys pksig and pksan.

d← Verify(m, σ, pksig, pksan)

Proof. The Proof algorithm takes as input the secret signing key sksig, a message m and a signature σ as
well a set of (polynomially many) additional message-signature pairs (mi, σi)i=1,2,...,q and the public
key pksan. It outputs a string π ∈ {0, 1}∗:

π ← Proof(sksig, m, σ, (m1, σ1), . . . , (mq, σq), pksan)

Judge. Algorithm Judge takes as input a message m and a valid signature σ, the public keys of the parties
and a proof π. It outputs a decision d ∈ {Sig, San} indicating whether the message-signature pair has
been created by the signer or the sanitizer:

d← Judge(m, σ, pksig, pksan, π)

For a sanitizable signature scheme the usual correctness properties should hold, saying that genuinely signed
or sanitized messages are accepted and that a genuinely created proof by the signer leads the judge to decide
in favor of the signer.

Signing Correctness. For any security parameter n ∈ N, any key pair (sksig, pksig) ← KGensig(1
n),

any key pair (sksan, pksan) ← KGensan(1n), any message m ∈ {0, 1}∗, any adm ∈ N × 2N and any
σ ← Sign(m, sksig, pksan,adm) we have

Verify(m, σ, pksig, pksan) = true.

Sanitizing Correctness. For any security parameter n ∈ N, any key pair (sksig, pksig)← KGensig(1
n), any

key pair (sksan, pksan)← KGensan(1n), any message m ∈ {0, 1}∗, any σ with Verify(m, σ, pksig, pksan) =
true, any mod ⊆ N×{0, 1}t matching adm from σ, and any pair (m′, σ′)← Sanit(m,mod, σ, pksig, sksan)
we require

Verify(m′, σ′, pksig, pksan) = true.
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Proof Correctness. For any security parameter n ∈ N, any key pair (sksig, pksig) ← KGensig(1
n), any

key pair (sksan, pksan) ← KGensan(1n), any message m ∈ {0, 1}∗, any signature σ, any mod matching
adm from σ, any (m′, σ′) ← Sanit(m,mod, σ, pksig, sksan) with Verify(m′, σ′, pksig, pksan) = true, and
any (polynomially many) m1, . . . , mq and adm1, . . . ,admq with σi ← Sign(mi, sksig, pksan,admi) and
(m, σ) = (mi, σi) for some i, any π ← Proof(sksig, m

′, σ′, m1, σ1, . . . , mq, σq, pksan) we require:

Judge(m′, σ′, pksig, pksan, π) = San.

3 Security Requirements

According to Ateniese et al. [ACdMT05] there are several security requirements that a secure sanitizable
signature needs to satisfy. Informally, these are:

Unforgeability. No outsider should be able to forge the signer’s or the censor’s signature. This is analo-
gously to the standard security requirement for signatures.

Immutability. The censor is allowed to modify predefined, admissible parts of a message, but he should not
be able to modify other parts of the message. For example, a sanitizer who is in charge of blackening
names in medical documents should not be able to modify the actual medical data.

Privacy. Nobody should be able to restore sanitized parts of a message. For example, if we have pseudonyms
in medical documents then, of course, the original names should not be recoverable.

Transparency. The idea of sanitizable signatures is that, within well-defined limits, the sanitizer inherits
the signing authority. Sometimes knowledge of this fact makes the sanitized data less valuable, e.g.,
an original business plan coming from the CEO is a more desirable target for a spy than the sanitized
plan from the administration office. Transparency now says that no one except for the signer and the
sanitizer should be able to distinguish signatures from the signer and the sanitizer.

Accountability. If the signer and the censor have an argument about the origin of a valid message-
signature pair (m, σ), then accountability demands that this dispute can be settled correctly by the
Judge. As an example consider a public servant acting as a sanitizer, but publishing unauthorized
information in the name of the government.

We next define these notions formally. An overview is given in Figure 1. We note that we call a sanitizable
scheme secure if it is simultaneously immutable, unforgeable, private, transparent, sanitizer-accountable and
signer-accountable according to the definitions below.

We note that our definitions usually consider three parties, the signer, the sanitizer and the adversary (for
some properties the adversary takes over the role of one of the other two parties). In practice, though, one
usually has many parties, e.g., a sanitizer assigned to many signers. Our definitions are robust in this regard
as we leave much power to the adversary and its queries, say, asking the honest signer to sign a message for a
chosen public sanitizer key and thus for different sanitizers. By this, our models can be easily mapped to the
case of multiple parties by standard guessing strategies (i.e., trying to predict the “target” signer-sanitizer
pair and simulating the other honest parties). As an example we show that our notion of immutability also
provides security against the “additional sanitizing attack” of [MIM+05], a typical non-malleability attack
for three parties.
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replacements

A

pksig, pksan sksig sksan

m∗, σ∗

Sign

Proof

Sanit

mi,admi, pksan,i

σi

mj ,modj , σj , pksig,j

m′

j , σ′

j

mk , σk , (m, σ), pksan

πk

(a) Unforgeability: A’s output has to verify as true and
∀i = 1, . . . , q : (pksan, m∗) 6= (pksan,i, mi) and ∀j = q +

1, . . . , r : (pksig, m∗) 6= (pksig,j
, m′

j).

A

pksig sksig

pk∗san, m∗, σ∗

Sign

Proof

mi, admi, pksan,i

σi

mi, σi, (m, σ), pksan

πi

(b) Immutability: A’s output has to verify as true and
for all i = 1, . . . , q it must holds that pk∗san 6= pksan,i or

m∗[ji] 6= mi[ji] for some ji /∈ admi.

A

pksig, pksan sksig sksan

a

b← {0, 1}

Sign

Proof

Sanit

LoRSanit

mj , admj , pksan

σj

mj , modj , σj , pksig

m′

j , σ′

j

mj , σj , (m, σ), pksan

πj

mj,0, modj,0

mj,1, modj,1

admj

m′

j , σ′

j

(c) Privacy: A wins if it outputs a = b.

A

pksig, pksan sksig sksan

a

b← {0, 1}

Sign

Proof

Sanit

Sanit/Sign
b = 0:

sign and sanitize

b = 1:
sign from scratch

mk, admk, pksan

σk

mk, modk, σk, pksig

m′

k, σ′

k

mk, σk, (m, σ), pksan

πk

mk, modk,admk

m′

k
, σ′

k

(d) Transparency: A wins if it outputs a = b.

Sanitizer Accountability: The adversary is a malicious
sanitizer and has the same input and oracles as in the
Immutability-Experiment above. Here A wins if the cor-
responding proof to its output (pk∗sig, m∗, σ∗) leads Judge
to decide that the signature has been generated by the
signer.

(e)

A

pksan sksan

pk∗sig, π∗, m∗, σ∗

Sanit

mi, modi, σi, pksig,i

m′

i, σ′

i

(f) Signer Accountability: A wins if it outputs a proof
π∗ for some valid message/signature pair (pk∗sig, m∗, σ∗)
which Judge relates to the sanitizer.

Figure 1: Security Requirements of Sanitizable Signatures
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3.1 Unforgeability

The unforgeability notion for sanitizable signatures follows the classical notion for regular signature schemes.
It says that nobody should be able to compute a tupel (m∗, σ∗) such that Verify(m∗, σ∗, pksig, pksan) = true

without having the secret keys sksig, sksan. This must hold even if one can see additional signatures for other
messages. We also give the adversary access to a Proof box (as proofs could potentially leak information
about the secret signing key). Yet, except for this secret key the adversary fully determines the other input
data, including the message-signature pairs and the public keys. This allows to capture for example scenarios
where several sanitizers are assigned to the same signer.

Definition 3.1 (Unforgeability) A sanitizable signature scheme SanSig is unforgeable if for any efficient
algorithm A the probability that the following experiment returns 1 is negligible (as a function of n):

Experiment Unforgeability
SanSig
A

(n)
(pksig, sksig)← KGensig(1

n)
(pksan, sksan)← KGensan(1n)

(m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,... )(pksig, pksan)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q

denote the queries and answers to and from oracle Sign,
and (mj ,modj, σj , pksig,j

) and (m′
j , σ

′
j) for j = q + 1, . . . , r

denote the queries and answers to and from oracle Sanit.
return 1 if

Verify(m∗, σ∗, pksig, pksan) = true and
for all i = 1, 2, . . . , q we have (pksan, m∗) 6= (pksan,i, mi) and

for all j = q + 1, . . . , r we have (pksig, m
∗) 6= (pksig,j

, m′
j).

3.2 Immutability

The censor can use the Sanit algorithm to change message blocks which the signer declared as modifiable.
If a malicious censor tries to modify other blocks this should not yield a correct signature. In the attack
model below the malicious sanitizer A interacts with the signer to receive signatures σi for messages mi,
descriptions admi and keys pksan,i of its choice, before eventually outputting a valid pair (pk∗san, m∗, σ∗) such

that message m∗ is not a “legitimate” transformation of one of the mi’s under the same key pk∗san = pksan,i.
The latter is formalized by demanding that each mi and m∗ differ in at least one inadmissible block (or that
pk∗san 6= pksan,i).

Definition 3.2 (Immutability) A sanitizable signature scheme SanSig is immutable if for any efficient
algorithm A the probability that the following experiment returns 1 is negligible (as a function of n):

Experiment Immutability
SanSig
A

(n)
(pksig, sksig)← KGensig(1

n)

(pk∗san, m∗, σ∗)← ASign(·,sksig,·),Proof(sksig,...,pksig,·)(pksig)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q

denote the queries and answers to and from oracle Sign.
return 1 if

Verify(m∗, σ∗, pksig, pk
∗

san) = true and
for all i = 1, 2, . . . , q we have

pk∗san 6= pksan,i, or

m∗[ji] 6= mi[ji] for some ji /∈ admi

//where shorter messages are padded with blocks of the special symbol ⊥ /∈ {0, 1}∗
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Thwarting Additional Sanitizing Attacks. Testifying to the fact that our definition is quite robust in
the multi-party setting we discuss that our notion of immutability implies the “additional sanitizing attack”
of Miyazaki et al. [MIM+05]. Suppose we have three parties in a department, the signer and two sanitizers.
Both sanitizers are authorized in principle to modify messages, but for a specific message m only the first
sanitizer is permitted to do so (say that this message contains information affecting the second sanitizer).
Assume now that a requesting party asks for the non-sensitive parts of message m, and that the first sanitizer
with public key pksan is honest and changes the message m to derive a new signature σ′ for m′. But now the
second sanitizer with public key pk∗san intercepts this reply, maliciously deletes the information about him in
message m′ and produces a signature σ∗ for this bowdlerized message m∗. Only this pair m∗, σ∗ is sent to
the requesting party, looking like an authorized reply to the requesting party.

Our notion of immutability is strong enough to capture “additional sanitizing attacks” (assuming unique
public keys of parties). Namely, in our definition we declare the adversary successful if it manages to find a
new public key pk∗san different from the sanitizer’s public key pksan such that the final output verifies correctly
under this new key pk∗san. An adversary can now mount the additional sanitizing attack by generating the
keys of the honest sanitizer internally (in a sense, giving even more control to the adversary), calling the
signer to create the document for the key pksan of the honest sanitizer and then outputting the further
censored message m∗ with σ∗ under a public key pk∗san. Hence, immutability guarantees that such a case
cannot succeed and, in particular, that the scheme is secure against “additional sanitizing attacks”.

3.3 Privacy

Privacy roughly means that it should be infeasible to recover information about the sanitized parts of the
message. As information leakage through the modified message itself can never be prevented, we only refer to
information which is available through the sanitized signature. There are two possible flavors in formalizing
privacy for sanitizable signatures. One approach follows semantic security of encryption schemes and is
called semantic privacy. It says that for any adversary A seeing sanitized signatures there is a simulator
S which is denied the signatures, but which is still as successful in predicting some information about the
original message as A. This notion is discussed comprehensively in Appendix A.

The other approach is based on the indistinguishability notion for encryption. In this case, an adversary
can choose pairs (m0,mod0), (m1,mod1) of messages and modifications together with a description adm

and has access to a “left-or-right” box. This oracle either returns a sanitized signature for the left tuple
(b = 0) or for the right tuple (b = 1). The task of the attacker is to predict the random bit b significantly
better than by guessing. Here we need the additional constraint that for each call to the left-or-right box
the resulting modified messages are identical for both tuples and the modifications both match adm, else
the task would be trivial. We write (m0,mod0,adm) ≡ (m1,mod1,adm) for this.

Below we formalize the more handy indistinguishability notion and discuss in Appendix A that the
simulation-based approach is equivalent (as in case of encryption). In our definition of privacy we grant the
adversary also access to a signature and a sanitizer oracle, enabling the adversary to create signatures which
can be sanitized afterwards. We note that the adversary does not get to choose the signature σj,b for inputs
to the left-or-right box. Instead, this signature is first computed from scratch. This corresponds to the
“hospital setting” mentioned in the introduction, where the medical data and, in particular, their signatures
are kept confidentially and only the sanitized document is released. One may define a stronger version where
the adversary gets to choose σj,0, σj,1, but it seems much harder to realize this requirement efficiently.

As in case of unforgeability and immutability we also grant the adversary access to Proof. Hence, since
we let the adversary also determine the input to this box the adversary may input the data received from
the Sign box here, but cannot use any of the initially computed and secret signatures in the calls to the
left-or-right box (unless the adversary accidently guesses one). The reason is again that proofs usually leak
information about the signatures but the signatures in the left-or-right box should remain secret (as in the
hospital example).

Definition 3.3 (Privacy) A sanitizable signature scheme SanSig is private if for any efficient algorithm
A the probability that the following experiment returns 1 is negligibly close to 1

2 :
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Experiment Privacy
SanSig
A

(n)
(pksig, sksig)← KGensig(1

n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,sksan,·),Proof(sksig,··· ),LoRSanit(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit(·, ·, ·, sksig, sksan, b)
on input (mj,0,modj,0,(mj,1,modj,1) and admj

first computes σj,b ← Sign(mj,b, sksig, pksan,admj) and then
returns (m′

j , σ
′
j)← Sanit(mj,b,modj,b, σj,b, pksig, sksan),

and where (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj),
i.e., are mapped to the same modified message.

return 1 if a = b.

3.4 Transparency

For transparency the original work of Ateniese et al. [ACdMT05] distinguishes between two notions, called
weak and strong transparency. In the case of weak transparency an adversary, given a signed message m
with a valid signature σ, should not be able to correctly guess whether m has been sanitized or was simply
signed. In the case of strong transparency, the adversary should not even be able to tell which parts of the
message are potentially mutable. Since the latter seems an overly strong requirement —observe that this
implies that the information adm must be hidden and must not be recoverable from σ, for example— we
call weak transparency simply transparency here and formalize only this notion.

We define transparency by the following adversarial game. We consider an adversary A with access to
Sign, Sanit and Proof oracles with which the adversary can create signatures for (sanitized) messages and
learn proofs. In addition, A gets access to a Sanit/Sign box which contains a secret random bit b ∈ {0, 1}
and which, on input a message m, a modification information mod and a description adm

• for b = 0 runs the signer to create σ ← Sign(m, sksig, pksig,adm), then runs the sanitizer and returns
the sanitized message m′ with the new signature σ′, and

• for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the signing algorithm to create
a signature σ′ and returns the pair (m′, σ′).

Adversary A eventually produces an output a, the guess for b. A sanitizable signature is now said to be
transparent if for all efficient algorithms A the probability for a right guess a = b in the above game is
negligibly close to 1

2 .

Definition 3.4 (Transparency) A sanitizable signature scheme SanSig is transparent if for any efficient
algorithm A the probability that the following experiment returns 1 is negligibly close to 1

2 :

Experiment Transparency
SanSig
A

(n)
(pksig, sksig)← KGensig(1

n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}

a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,... ),Sanit/Sign(·,·,·,sksig,sksan,pksig,pksan,b)(pksig, pksan)
where oracle Sanit/Sign for input mk,modk,admk

computes σk ← Sign(mk, sksig, pksan,admk)
then (m′

k, σ′
k)← Sanit(mk,modk, σk, pksig, sksan),

then, if b = 1, replaces σ′
k by σ′

k ← Sign(m′
k, sksig, pksan,admk),

and finally returns (m′
k, σ′

k).
return 1 if a = b

9



We note that, analogously to the case of privacy, we have σk be created by the signer locally in the
Sanit/Sign box. A stronger requirement would enable the adversary to determine this signature as part of
the input. Yet, this notion again does not reflect the “hospital scenario” nor does it seem to be easy to
realize efficiently. Similarly, the adversary cannot use these signatures in the Proof box.

Also note that, with the definition above, schemes with deterministic signature or sanitizing algorithms
cannot be transparent, because an adversary could then easily compare answers from the Sanit/Sign box
with outputs of the signature sanitizing oracle. Yet, since some applications may need transparency even if
a message has been signed or sanitized before, we provide the stronger requirement. The weaker guarantee
would then also demand from the adversary’s queries to the signing and sanitizing boxes that for all k we
have m′

k 6= mi for all i and m′
k 6= m′

j for all j.

3.5 Accountability

Accountability says that the origin of a (sanitized) signature should be undeniable. There are two types of
accountability:

Sanitizer-Accountability. If a message has not been signed by the signer, then even a malicious sanitizer
should not be able to make the judge accuse the signer.

Signer Accountability. If a message and its signature have not been sanitized, then even a malicious
signer should not be able to make the judge accuse the sanitizer.

Both notions are formalized below through two similar, yet slightly different adversarial games.
In the sanitizer-accountability game let ASanit be an efficient adversary playing the role of the malicious

sanitizer. Adversary ASanit has access to a Sign oracle and a Proof oracle. Its task is to output a valid
message-signature pair m∗, σ∗ together with a key pk∗san (with (pk∗san, m∗) being different from messages
previously signed by the Sign oracle) such that the proof produced by the signer via Proof still leads Judge

to decided “Sig”, i.e., that the signature has been created by the signer.

Definition 3.5 (Sanitizer-Accountability) A sanitizable signature scheme SanSig is sanitizer-accountable
if for any efficient algorithm ASanit the probability that the following experiment returns 1 is negligible (as a
function of n):

Experiment San-Accountability
SanSig
ASanit

(n)
(pksig, sksig)← KGensig(1

n)

(pk∗san, m∗, σ∗)← A
Sign(·,sksig,·,·),Proof(sksig,... )
Sanit (pksig)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q

denote the queries and answers to and from oracle Sign

π ← Proof(sksig, m
∗, σ∗, (m1, σ1), . . . , (mq, σq), pksan)

return 1 if
(pk∗san, m∗) 6= (pksan,i, mi) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pksig, pk
∗

san) = true, and
Judge(m∗, σ∗, pksig, pk

∗

san, π) = Sig

In the signer-accountability game a malicious signer ASign gets a public sanitizing key pksan as input. It is
allowed to query a sanitizing oracle about tuples (mi,modi, σi, pksig,i

) receiving answers (m′
i, σ

′
i). Adversary

ASign finally outputs a tuple (pk∗sig, π
∗, m∗, σ∗) and is considered to succeed if Judge accuses the sanitizer for

the new key-message pair pk∗sig, m
∗ with a valid signature σ∗. Note that our model allows the proof π to

contain information about the original message.

Definition 3.6 (Signer-Accountability) A sanitizable signature scheme SanSig is signer-accountable if
for any efficient algorithm ASign the probability that the following experiment returns 1 is negligible (as a
function of n):
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Experiment Sig-Accountability
SanSig
ASign

(n)

(pksan, sksan)← KGensan(1n)

(pk∗sig, π
∗, m∗, σ∗)← A

Sanit(·,·,·,·,sksan)
Sign (pksan)

letting (m′
i, σ

′
i) for i = 1, 2, . . . , q

denote the answers from oracle Sanit.
return 1 if

(pk∗sig, m
∗) 6= (pksig,i

, m′
i) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pk∗sig, pksan) = true and
Judge(m∗, σ∗, pk∗sig, pksan, π∗) = San

4 Relationships of the Security Requirements

In this section we show that except for the privacy and the unforgeability requirement all other notions are
independent (in the sense that none of them follows from the other properties, even if they all hold at the
same time). We first show that privacy follows from transparency alone, and unforgeability holds if the two
versions of accountability hold simultaneously. We then show the independence of the other requirements.

We stress again that our results are in contrast to the claim by Ateniese et al. [ACdMT05] that, for
example, accountability follows from the unforgeability requirement. Our results show that unforgeability
follows from accountability whereas the other direction is not true. It is not clear if Ateniese et al. [ACdMT05]
consider signer-accountability at all, or merely refer to sanitizer-accountability. However, as we have argued
both versions of accountability are desirable to avoid framing attacks from either side, and in either case we
also show that sanitizer-accountability alone does not imply unforgeability.

Transparency

Accountability

Immutability

Sanitizer Signer

Unforgeability

Privacy
Prop. 4.1

Prop. 4.2

Prop. 4.3

Prop. 4.4

Prop. 4.5 Prop. 4.6

Figure 2: Summary of the relations among the security properties of sanitizable signatures. Arrows represent
implications, frames represent the independence from other requirements.

4.1 Implications

We show that privacy follows from transparency. The idea is that for a transparent scheme one cannot
distinguish between signatures created by the signer and ones produced by the sanitizer. Hence, we can
essentially replace the left-or-right sanitizing oracle in the privacy experiment by the procedure which cre-
ates the signatures for the sanitized message with the help of the signer algorithm. But since the privacy
experiment requires the sanitized messages to be identical, the answer is always a fresh signature for the
same message, independent of the left-or-right question, and privacy follows.

Proposition 4.1 (Transparency Implies Privacy) A transparent sanitizable signature scheme is also
private.

Proof. We show this through contraposition, i.e., we construct a successful attacker against transparency
assuming a successful attacker against privacy. Let Apriv be an attacker against privacy. We construct
Atrans, essentially running a black-box simulation of Apriv, as follows.
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Atrans gets pksig and pksan as input, which it forwards to Apriv. Furthermore, Atrans picks a random
bit b∗ ← {0, 1}. For every value that Apriv requests to be signed, sanitized or proven Atrans forwards
the corresponding value to its own external box and hands the answer back to Apriv. For every pair
(m0,mod0), (m1,mod1) with adm that Apriv sends to the left-or-right sanitizer box, Atrans forwards message
(mb∗ ,modb∗ ,adm) to its Sanit/Sign box. The answer from the the box is returned to Apriv. Eventually,
Apriv outputs its guess a. Algorithm Atrans outputs a∗ = 0 iff a = b∗.

We now look at the probabilities of Atrans being successful:

• Given that b = 0 (i.e., the Sanit/Sign box always sanitizes) the simulation from Apriv’s point of view is
identical to the actual attack against privacy (with a random bit b∗). Hence,

Prob[a∗ = 0 | b = 0] = Prob[Apriv = b∗] .

• Given that b = 1 (i.e., the Sanit/Sign box always signs the modified message) the bit b∗ is information-
theoretically hidden from Apriv (observing that the modified messages from queries in the privacy
experiment have to be identical and the input to the signing algorithm is therefore independent of b∗):

Prob[a∗ = 1 | b = 1] = 1
2 .

Since we have assumed Apriv to be successful, Apriv has at least a success probability of 1
2 + 1

poly(n) for some

polynomial poly(n). It follows that Atrans has a success probability of at least

Prob[Atrans = b] = Prob[ b = 0] · Prob[Atrans = 0 | b = 0]

+ Prob[ b = 1] · Prob[Atrans = 1 | b = 1]

=
1

2
·

(

1

2
+

1

poly(n)

)

+
1

2
·
1

2

=
1

2
+

1

2 · poly(n)

which is significantly larger than 1
2 . �

As mentioned above, unforgeability is implied by the two versions of accountability. The idea behind the
result is that, given a successful forgery, the judge cannot really decide if this forgery has been produced by
the signer or the sanitizer. Else the judge was biased towards outputting Sig or San for indecisive cases too
often, contradicting either the sanitizer- or signer-accountability.

Proposition 4.2 (Accountability Implies Unforgeability) A sanitizable signature scheme which is
sanitizer-accountable and signer-accountable is also unforgeable.

Proof. We show this proposition again by contraposition, constructing attackers ASanit and ASign against
the versions of accountability assuming a successful attacker Aunf against unforgeability. We first describe
the adversary ASanit against sanitizer-accountability, running the corresponding accountability experiment.
The idea behind our adversaries is to use adversary Aunf as a subroutine, creating a virtual environment
matching the unforgeability experiment. The resulting attackers will both be efficient.

More formally, adversaryASanit receives as input a public key pksig of the signer. It runs the key generation
algorithm KGensan(1n) to derive a key pair (pksan, sksan) and initializes a black-box simulation of adversary
Aunf on (pksig, pksan). For each subsequent signature or proof request of the unforgeability adversary, our
attacker ASanit forwards the requests to its own oracle and hands the reply back to Aunf. For each sanitizing
request our adversary exploits the knowledge of sksan and proceeds as the sanitizing algorithm would. When
Aunf finally outputs the forgery attempt m∗, σ∗ then ASanit, too, outputs (pksan, m∗, σ∗) and stops.

Before analyzing adversary ASanit we first describe our attacker ASign against signer-accountability. This
adversary operates essentially in the same way as ASanit, mounting a black-box simulation of Aunf. The
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only exception lies in the role switch of the signature and sanitizing steps, i.e., ASign simulates Sign and
Proof internally (with self-chosen keys sksig, pksig) and uses its external Sanit oracle to answer such queries.
AdversaryASign also makes an additional step at the end. Having received m∗, σ∗ fromAunf it runs algorithm
Proof on sksig, m

∗, σ∗, all previously signed message-signature pairs and the public keys to derive π∗. Our
attacker then outputs (pksig, π

∗, m∗, σ∗).
For the analysis let ForgeSanit and ForgeSign be the events thatAunf in the simulation ofASanit resp.ASign

above outputs m∗, σ∗ such that m∗ has never been submitted to the signing oracle nor been the answer of
the sanitizing oracle (or, if so, a different public key has been used in the query), and that the conclusive run
of the verifier in the corresponding accountability experiment returns true. Note that since the simulations
are identical we can drop the subscript and simply speak of event Forge. Also note that the simulations
are perfect in the sense that they match the unforgeability experiment ideally, and the probability for event
Forge to happen is exactly the probability of Aunf winning in the unforgeability experiment.

We clearly have

Prob
[

San-Accountability
SanSig
ASanit

(n) = 1
]

≥ Prob
[

San-Accountability
SanSig
ASanit

(n) = 1
∣

∣

∣
Forge

]

· Prob[Forge]

Prob
[

Sig-Accountability
SanSig
ASign

(n) = 1
]

≥ Prob
[

Sig-Accountability
SanSig
ASign

(n) = 1
∣

∣

∣
Forge

]

· Prob[Forge]

Conditioning on Forge we note that the probability for Sig-Accountability
SanSig
ASign

(n) = 1, i.e., that Judge

returns Sanit, is exactly the probability for San-Accountability
SanSig
ASanit

(n) = 0, i.e., Judge not outputting Sign.
The experiments only differ in two points:

• In ASanit’s attack the Proof algorithm is called externally by the experiment, in ASign’s case it is called
internally. But both times Proof is executed on genuine data.

• In the sanitizer-accountability experiment we require (pk∗san, m∗) to be distinct from all queries to the
signature oracle, whereas in the signer-accountability experiment (pk∗sig, m

∗) must be different from
all answers from the sanitizing oracle. But since we assume Forge both conditions are satisfied
simultaneously.

Taking the above into account and adding the two terms we thus obtain:

Prob
[

San-Accountability
SanSig
ASanit

(n) = 1
]

+ Prob
[

Sig-Accountability
SanSig
ASign

(n) = 1
]

≥ Prob
[

San-Accountability
SanSig
ASanit

(n) = 1
∣

∣

∣
Forge

]

· Prob[Forge]

+
(

1− Prob
[

San-Accountability
SanSig
ASanit

(n) = 1
∣

∣

∣
Forge

]

)

· Prob[Forge]

= Prob[Forge] .

By assumption the latter probability is non-negligible, implying that at least one of the probabilities and the
left hand side must be non-negligible, too. This, however, contradicts (at least) one of the accountabilities
notions. �

In Appendix C we show that one of the accountability properties alone does not suffice to imply unforgeability,
even when assuming immutability and transparency (and thus privacy) as well.

4.2 Separations

Now we show that all the other security requirements are independent, i.e., no property follows from a
combination of the other properties. Our results all assume that there exist secure sanitizable signature
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scheme obeying all properties (which, according to the next section, exist under common cryptographic
assumptions) and then show that there is a scheme inheriting all properties except for the one in question.
We start with immutability:

Proposition 4.3 (Independence of Immutability) Assume that there exists a secure sanitizable signa-
ture scheme. Then there exists a sanitizable signature scheme which is unforgeable, private, transparent,
sanitizer-accountable and signer-accountable, but not immutable.

Proof. We show this proposition by modifying a sanitizable signature scheme fulfilling all security require-
ments in a way that immutability no longer holds, but all the other requirements remain unaffected. Let
SanSig = (KGensig, KGensan, Sign, Sanit, Verify, Proof, Judge) be a secure sanitizable signature scheme and let
SanSig′ = (KGensig, KGen′san, Sign′, Sanit′, Verify′, Proof′, Judge′) be the following modification of SanSig:

• KGensig remains unchanged.

• KGen′san works as KGensan, except that it concatenates a ’1’ to the generated public key, pk′san =
pksan||1.

• Verify′ outputs true if pk′san ends with ’0’, else it cuts off the last bit of pk′san and runs Verify for the
input data and this shortened key.

• Judge′ takes the public key of the sanitizer and outputs San if this public key ends with ’0’. Else, it
deletes this bit and runs the original Judge algorithm for the input data and this shortened key.

• all other algorithms merely chop off the last bit of pk′san and work as their ancestors (but using the
shortened key).

Since the adversary against immutability can choose a public sanitizing key ending with ’0’, in this
modified scheme he can easily produce a positive verification for any message (without even requiring an
original signature). Therefore, he is able to change forbidden blocks within a chosen message keeping the
verification status true. Hence SanSig′ is obviously not immutable.

Now consider the other properties. Since the key generation algorithm never outputs an exceptional key
pksan ending with ’0’, completeness is preserved. Also note that, except for the attackers against immutability
and sanitizer-accountability, none of the adversaries in their games is able to choose the public sanitizing
key pk′san. Therefore, as the other algorithms basically only remove the final bit of the key and then proceed
as before, the other security requirements clearly stay intact.

On the other hand, an attacker against sanitizer-accountability cannot benefit from choosing a key pksan

ending with ‘0‘ as the judge always accuses the sanitizer for such keys. For all other keys the sanitizer-
accountability easily transfers from the original scheme. In summary, this scheme SanSig′ fulfills all the
security requirements except for immutability. �

Next we show that transparency is also independent:

Proposition 4.4 (Independence of Transparency) Assume that there exists a secure sanitizable signa-
ture scheme. Then there exists a sanitizable signature scheme which is immutable, unforgeable, private,
sanitizer-accountable and signer-accountable, but not transparent.

Proof. Again let SanSig = (KGensig, KGensan, Sign, Sanit, Verify, Proof, Judge) be a sanitizable signature
scheme fulfilling all security requirements and SanSig′ = (KGensig, KGensan, Sign′, Sanit′,Verify′, Proof′, Judge′)
the following modification:

• algorithms KGensig and KGensan stay unchanged.

• Sign′ works as Sign, except that it appends ’1’ to the signature, σ′ = σ||1.

• Sanit′ works as Sanit, except that appends ’0’ to the signature, σ′ = σ||0.
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• algorithms Verify′, Judge′ and Proof′ all delete the final bit of the input signature σ′ (and in case of
Proof′ of all additional signature given as input) and then run the original algorithm on the input data
and this shortened signature(s).

Since an adversary playing against transparency can simply output the last bit of σ′ as its guess for the
secret bit b, and wins with probability 1, the modified scheme is obviously not transparent. It remains to
show that SanSig′ fulfills the other requirements.

First note that completeness is not affected by the signature extension and shortening and follows from
the completeness of the underlying scheme. Next, since the Verify, Judge and Proof algorithms basically
ignore the final bit of signatures, immutability, unforgeability,and both versions of accountability remain
secure. Formally, one can easily turn a successful adversary against any of the properties of the modified
scheme into one against the corresponding property of the original scheme by appending and removing the
bits in the signatures for oracle queries (except for the transparency experiments it is always publicly known
whether one expects the signature to end with ’0’ or with ’1’). This is also true for privacy where each
signature of the sanitizing box merely contains the extra ’0’ bit. �

Finally we show that independence also holds for the two types of accountability:

Proposition 4.5 (Independence of Sanitizer-Accountability) Assume that there exists a secure san-
itizable signature scheme. Then there exists a sanitizable signature scheme which is immutable, unforgeable,
private, transparent and signer-accountable, but not sanitizer-accountable.

Proof. This time, we need an additional cryptographic primitive, namely a one-way function f . Note
that the existence of an unforgeable sanitizable scheme already implies the existence of one-way functions,
such that our solution does not rely on any extra assumption. We also assume that the block length t
equals n and that message blocks are from {0, 1}t (relaxing these requirements is possible but this simplifies
the presentation here). Again, let SanSig′ = (KGen′sig, KGen′san, Sign′, Sanit′, Verify′, Proof′, Judge′) be the
following modification of a scheme SanSig having all properties:

• KGen′sig runs KGensig to generate a key pair (sksig, pksig), It also picks a random x ← {0, 1}n and

outputs the modified secret key sk′sig = (sksig, x) and the modified public key (pksig, f(x)).

• KGen′san works as KGensan, except that it concatenates ’1’ to the public key, pk′san = pksan||1.

• Sign′ for input m,adm and keys sk′sig, pk
′

san first runs Sign for this input (with sksig and the last bit of

pk′san chopped off) to get a signature σ. It then checks if m is a single and modifiable block and that
pk′san consists of n zeros, in particular, that it ends with ’0’. If so, it appends the preimage of the value
f(x) in the public key and returns (σ, x), else it outputs σ.

• Verify′ outputs true if pk′san consists of n zeros (and ends with ’0’) and its input message m consists of
a single mutable block1, and if m is a preimage of the value f(x) in the public key pk′sig. In all other

cases it cuts off the last bit of pk′san and executes Verify on the input data (and the shortened public
key).

• Judge′ outputs Sign if pk′san ends with ’0’, else cuts off the last bit of pk′san and runs Judge.

• all other algorithms cut off the last bit of pk′san and execute their corresponding ancestor (but using
the shortened key).

The adversary against sanitizer-accountability can easily produce a key pk∗san consisting only of n bits ’0’ in
the first stage. Then it picks a random single-block message m and submits this message together with the
description adm that this message is modifiable and pk∗san to the signature oracle to receive a signature σ and
the preimage x. The adversary outputs pk∗san, m∗ = x and σ. It is clear that the modified verifier accepts

1As adm is recoverable from the signature, Verify′ can access this information.
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this pair and that, except with probability 2−n with which m = m∗, this is a new message. Moreover, Judge′

outputs Sig for this key pk∗san, and SanSig′ thus does not fulfill sanitizer-accountability.
As for the other properties, completeness, unforgeability, transparency, privacy and signer-accountability

cannot run into the exception mode, because honestly generated keys pk′san do not end with ’0’. It remains
to show that the requirement of immutability remains true. There are two cases:

• If an adversary against immutability at some point receives x from the signature oracle as additional
output then it has queried the oracle about a single-block, modifiable message m and has a public
sanitizer key consisting of ’0’. In this case, outputting some pk∗san, m∗, σ∗ triggering the exceptional
mode of the verifier, returning true for m∗ = x, is not a successful attack against immutability anymore
(because pk∗san needs to be the all-zero string and m∗ cannot differ from m in a forbidden block). In
any other case the immutability from the original scheme carries over.

• If an adversary against immutability never receives x from the signer as additional output, it can only
abuse the exceptional mode of the verifier if it is able to invert the one-way function f on the unknown
input x (this informal argument can be easily turned into a formal inversion algorithm). Since this
happens only with negligible probability, the immutability property follows from the immutability of
the underlying scheme.

This shows that immutability is preserved. �

Proposition 4.6 (Independence of Signer-Accountability) Assume that there exists a secure saniti-
zable signature scheme. Then there exists a sanitizable signature scheme which is immutable, unforgeable,
private, transparent and sanitizer-accountable, but not signer-accountable.

Proof. In the same way as above let SanSig = (KGensig, KGensan, Sign, Sanit, Verify, Proof, Judge) be a
sanitizable signature scheme fulfilling all security requirements. Define the modified scheme SanSig′ =
(KGen′sig, KGensan, Sign′, Sanit′, Verify′, Proof′, Judge′) as follows:

• KGensan remains unchanged.

• KGen′sig works as KGensig, except that it concatenates ’1’ to the signer key, pk′sig = pksig||1.

• Verify′ outputs true if pk′sig ends with ’0’, else it cuts off the last bit of pk′sig and runs Verify on the
input data and the shortened key.

• Judge′ outputs San if pk′sig ends with ’0’, else it cuts off the last bit of pk′sig and runs Judge on the input
data and the shortened key.

• all other algorithms cut off the last bit of pk′sig and work as their ancestors (but using the shortened
key as input).

Since the adversary against signer-accountability can easily choose a public signing key ending with ’0’, he
can easily produce an output that verifies and is still judged San. Thus, SanSig′ does not fulfill signer-
accountability. Since in all other cases the public signer key is chosen genuinely, the exception cases do not
apply and all other properties (including completeness) are inherited. �

5 Sanitizable Signatures based on Chameleon Hashes

In this section we show that our security requirements can be met. Our construction is a modification of
the scheme by Ateniese et al. [ACdMT05] and also uses chameleon hashes. The idea is as follows: Instead of
signing the full message in clear we first replace modifiable message blocks m[i] by (randomized) hash values
h[i] = CHash(pksan, m[i]; r[i]) of the blocks. Then we sign this sequence of message blocks and hash values
with a regular signature scheme.
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The hash values have the special “chameleon” property that, if one has the sanitizer’s trapdoor infor-
mation sksan and r[i], one can easily find collisions, i.e., for given m′[i] one is able to determine r′[i] with
h[i] = CHash(pksan, m′[i]; r′[i]), leaving the hash value invariant. This allows the sanitizer to modify message
blocks for which the signer includes the r[i]’s in the signature (and only those), and such that the actual
signature on the hash values does not need to be modified. We note that implementing the idea is more
complicated due to the accountability problem, requiring something related to (but not exactly like) key-
exposure freeness [AdM04] from the chameleon hash. The latter also necessitates the usage of tags entering
the hash computations.

5.1 Construction

A chameleon hash scheme CH = (CHKGen, CHash, CHAdapt) (with tags) consists of three efficient algorithms
such that algorithm CHKGen on input 1n returns a key pair (sk, pk), algorithm CHash on input pk, a tag
Tag ∈ {0, 1}n, a message m and randomness r (which is efficiently samplable from some range Rpk) returns
a hash value h = CHash(pk,Tag, m; r) and algorithm CHAdapt on input sk,Tag, m, r and Tag

′, m′ returns
r′ such that CHash(pk,Tag, m; r) = CHash(pk,Tag

′, m′; r′). It also holds that for any pk,Tag, m,Tag
′, m′

the distribution of CHAdapt(sk,Tag, m, r,Tag
′, m′) (over the choice of r) is the same as the distribution of r

itself, also implying that a hash value CHash(pk,Tag, m; r) (over the choice of r) is distributed independently
of Tag, m.

Key-exposure freeness [AdM04] now says that it is infeasible to find collisions, even if one gets to see
collisions for other values. To be more precise, the security requirement demands that, after having learned
collisions for some tags, one cannot create a collision for a new tag. This is a strong and useful notion and,
yet, it would not be sufficient to provide security in our setting. Suppose we attach tags to the documents
such that the signer modifies messages by finding collisions for the hash value for the corresponding tags.
Then a malicious signer could still try to escape accountability by finding further collisions for the same tag.
We therefore introduce the notion of collision-resistance under random-tagging attacks, i.e., where collisions
for different tags are created but where one of the two tags is chosen at random (and the other one is provided
by the adversary). In Appendix D we show that such chameleon hashes exist under the RSA assumption in
the random oracle model:

Definition 5.1 (Collision-Resistance under Random-Tagging Attacks) A chameleon hash scheme
CH = (CHKGen, CHash, CHAdapt) is collision-resistant under random-tagging attacks if for any efficient
adversary A the following experiment returns 1 with negligible probability only:

Experiment RndTagCHA (n)
(pk, sk)← CHKGen(1n)
(Tag, m, r,Tag

′, m′, r′)← AOAdapt(sk,·,·,·,·)(pk)
where oracle OAdapt for the i-th query (Tagi, mi, ri, m

′
i) with Tagi ∈ {0, 1}n

samples Tag
′

i ← {0, 1}n and computes r′i ← CHAdapt(sk,Tag, m, r,Tag
′, m′).

Return (Tag
′

i, r
′
i).

return 1 if
(Tag, m) 6= (Tag

′, m′) and
CHash(pk,Tag, m; r) = CHash(pk,Tag

′, m′; r′) and
{(Tag, m), (Tag

′, m′)} 6= {(Tagi, mi), (Tag
′
i, m

′
i)} for all i = 1, 2, . . . and

{(Tag, m), (Tag
′, m′)} 6= {(Tag

′

i, m
′
i), (Tag

′

j , m
′
j)} for alli, j = 1, 2, . . . .

The condition {(Tag, m), (Tag
′, m′)} 6= {(Tagi, mi), (Tag

′

i, m
′
i)} rules out trivial duplication attacks

in which the adversary simply copies the data from the interaction with the oracle. The other condition
{(Tag, m), (Tag

′, m′)} 6= {(Tag
′

i, m
′
i), (Tag

′

j , m
′
j)} prevents trivial “transitivity” attacks where the adver-

sary calls the oracle about the same (Tagi, mi, ri) twice, but with different m′
i, m

′
j . Then the oracle’s answers

collide, as they yield the same value CHash(pk,Tagi, mi; ri) individually.
In our construction we also need that the tags generated by the signer and the ones by the sanitizer look

identical (from the outside) but are generated differently (and that this is provable to a judge). Otherwise
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a malicious signer would be able to claim that a sanitized message has been the original. We resolve
this by letting the tags of the sanitizer be truly random, whereas the tags of the signer need to be created
pseudorandomly (with a pseudorandom generator PRG mapping n-bit inputs to 2n-bit outputs). In addition,
the seed for the pseudorandomly generated labels should be recoverable for the signer from the signature
and the secret key, such that we use a pseudorandom function PRF (mapping n-bit inputs to n-bit outputs
for n-bit keys) to derive the seed for PRG from a nonce Nonce, included in the signature.

Finally, we also need a regular signature scheme S = (SKGen, SSign, SVf) being existentially unforgeable
under adaptive chosen-message attacks. Below we let (a1, a2, . . . ) be some encoding of bit strings a1, a2, . . .
into {0, 1}∗ such that (in contrast to concatenation a1||a2|| . . . ) all individual components are recoverable:

Construction 5.2 (Sanitizable Signature Scheme) Define the following sanitizable signature scheme
SanSig = (KGensig, KGensan, Sign, Sanit, Verify, Proof, Judge):

Key Generation. Algorithm KGensig on input 1n generates a key pair (pk, sk)← SKGen(1n) of the underly-
ing signature scheme, picks a key κ← {0, 1}n for the pseudorandom function and returns (pksig, sksig) =
(pk, (sk, κ)). Algorithm KGensan for input 1n returns a pair (pksan, sksan) ← CHKGen(1n) of the
chameleon hash scheme.

Signing. Algorithm Sign on input m ∈ {0, 1}tℓ, sksig, pksan,adm picks Nonce ← {0, 1}n at random, com-
putes x = PRF(κ,Nonce) and Tag = PRG(x), and picks r[j] for each j in adm at random. It
computes

h[j] =

{

CHash(pksan,Tag, (j, m[j], pksig); r[j]) if j is in adm

m[j] else

for each block m[j] ∈ {0, 1}t and computes σ0 ← SSign(sksig, (h, pksan,adm)) for h = (h[1], h[2], . . . , h[ℓ]).
It returns σ = (σ0,Tag,Nonce,adm, r[j1], . . . , r[jk]) where each ji is in adm.

Sanitizing. Algorithm Sanit on input a message m, information mod, a signature σ = (σ0,Tag,Nonce,
adm, r[j1], . . . , r[jk]), pksig and sksan first checks that each modification in mod is admissible according
to adm and that σ0 is a valid signature for (h, pksan,adm). If not, it stops with output ⊥. Else, for
each j in adm it lets m′[j] be the modified block of m[j] (possibly m′[j] = m[j]), picks new values
Nonce

′ ← {0, 1}n and Tag
′ ← {0, 1}2n and replaces each r[j] in the signature by

r′[j]← CHAdapt(sksan,Tag, (j, m[j], pksig), r[j],Tag
′, (j, m′[j], pksig)).

It outputs m′ and σ′ = (σ0,Tag
′,Nonce

′,adm, r′[j1], . . . , r
′[jk]).

Verification. Algorithm Verify on input a message m ∈ {0, 1}tℓ and a signature σ = (σ0,Tag,Nonce,
adm, r[i1], . . . , r[ik]), pksig and pksan computes

h[j] =

{

CHash(pksan,Tag, (j, m[j], pksig); r[j]) if j is in adm

m[j] else

and then outputs SVf(pksan, (h, pksan,adm), σ0) for h = (h[1], . . . , h[ℓ]).

Proof. Algorithm Proof on input sksig, m, σ and a sequence (mi, σi) as well as pksan searches the sequence
to find a tuple (Tagi, (j, mi[j], pksig), r[j]) such that

CHash(pksan,Tagi, (j, mi[j], pksig), ri[j]) = CHash(pksan,Tag, (j, m[j], pksig), r[j])

for some distinct pair (Tag, (j, m[j], pksig)) in m, σ and where Tagi = PRG(xi) for xi = PRF(κ,Noncei)
for the value Noncei in σi. If it finds such data it returns this colliding tuple together with xi, i.e.,

π = (Tagi, (j, mi[j], pksig), ri[j], xi),

else it outputs ⊥.
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Judge. The judge on input m, σ, pksig, pksan and π = (Tagπ, (j, mπ[j], pksig,π), rπ[j], xπ) checks that pksig =
pksig,π, that π describes a non-trivial collision under CHash(pksan, ·, ·, ·) for the pair ((Tag, j, m[j], pksig),
r[j]) in σ, i.e.,

CHash(pksan,Tagπ , (j, mπ[j], pksig,π); rπ[j]) = CHash(pksan,Tag, (j, m[j], pksig); r[j]),

that the block j is admissible, and that Tagπ = PRG(xπ) for the given value xπ in the proof. If so, it
outputs San, else it returns Sig.

Completeness of signatures generated by the signer follows easily from the completeness of the underlying
signature scheme, completeness of signatures generated by the sanitizer follows from the fact that algorithm
CHAdapt always returns a collision, and completeness for proofs holds as one always finds convincing data
then.

5.2 Security

It remains to prove security:

Theorem 5.3 The sanitizable signature scheme in Construction 5.2 is secure, i.e., it is immutable, trans-
parent, sanitizer- and signer-accountable (and thus private and unforgeable), assuming that the chameleon
hash function is collision-resistant under random-tagging attacks, that PRG and PRF are pseudorandom and
that the signature scheme is existentially unforgeable under adaptive chosen-message attacks.

Proof. We stepwise go through the properties. Most times we merely outline the security proof because a
formalization is straightforward.

Immutability. Assume that the scheme is not immutable according to our definition and that there exists
a successful adversary A against this property. We show that this contradicts the unforgeability of the
underlying signature scheme. There are two cases: Assume that A succeeds by outputting (pk∗san, m∗, σ∗)
such that (pk∗san,adm∗, h∗) is different from all other data (pksan,i,admi, hi) appearing in the attack. Then

the valid signature σ∗
0 included in σ∗ is for a message (h∗, pk∗san,adm∗) which has not been signed with the

underlying signature scheme before. This, however, contradicts the unforgeability of this signature scheme
(observing that we can simulate Proof perfectly without knowledge of the secret key of the signature scheme).

Next assume (pk∗san,adm∗, h∗) is identical to some (pksan,i,admi, hi). Then, since pk∗san = pksan,i the
messages m∗ and mi must differ in at least one inadmissible block ji according to admi. But since adm∗ =
admi this must also be an inadmissible block according to adm∗ in m∗. Therefore h∗[ji] = m∗[ji] must be
different from hi[ji] = mi[ji], contradicting the fact h∗ = hi. Hence, the second case cannot occur and the
scheme is immutable.

Transparency. Transparency holds because with overwhelming probability all values Nonce picked by
the signer are distinct and thus all x-values are computationally indistinguishable from independent and
randomly chosen values. In this case all the generator’s outputs, too, are indistinguishable from random
2n-bit strings (as chosen by the sanitizer). Given this the claim now follows from the distributional property
of CHAdapt, that the sanitizing process goes through all admissible block and updates them, and the fact
that the distribution of the input (h, pksan,adm) to the signing step is independent of the message. Hence,
the distribution of the reply is computationally indistinguishable in the two cases for the Sanit/Sign box,
independently of further queries to the signature, sanitizing or proof oracles (using the fact that the guessing
the Nonce values in the signatures computed internally in the Sanit/Sign box is infeasible).

Sanitizer-Accountability. Assume that the scheme was not sanitizer-accountable and there was a suc-
cessful adversaryA, i.e., such that Proof algorithm cannot find a non-trivial collision in the chameleon hashes
for (pk∗san, m∗, σ∗) and the (pksan,i, mi, σi) queries. First note that if (h∗, pk∗san,adm∗) 6= (hi, pksan,i,admi)
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for all i, the valid signature σ∗
0 in σ∗ for this tuple would constitute a successful forgery against the signature

scheme (using again the fact that Proof can be easily simulated without the secret signing key).
Hence, there must be some i with (h∗, pk∗san,adm∗) = (hi, pksan,i,admi). In particular, since a success

requires (pk∗san, m∗) 6= (pksan,i, mi) we must have m∗[j] 6= mi[j] for some block j. Furthermore, because
adm∗ = admi and inadmissible message blocks are output in clear and cannot be distinct, it holds that

h∗[j] = CHash(pk∗san,Tag
∗, (j, m∗[j], pksig); r

∗[j])

= CHash(pk∗san,Tagi, (j, mi[j], pksig); ri[j]) = hi[j]

for some r∗[j] in σ∗ and ri[j] in σi. This, however, implies that Proof finds such a non-trivial collision with
overwhelming probability. Given this, it is clear that Proof can also output xi from the genuine signature
data.

Signer-Accountability. We finally show signer-accountability, this time using the security under random-
tagging attacks of of the chameleon hash function. Assume that there is a successful attacker making the
Judge accuse the sanitizer for a message which has not been sanitized by the legal sanitizer.

First note that for the adversary’s successful output pk∗sig, m
∗, σ∗ (with tag Tag

∗) and π∗ = (Tagπ,

(j, mπ[j], pksigπ), rπ [j], xπ) with overwhelming probability Tagπ 6= Tag
′

i for all i. This is so because with

overwhelming probability no Tag
′

i lies in the range of PRG and there cannot be a valid preimage xπ for
Tagπ = Tag

′

i. In particular, it follows that {Tag
∗,Tagπ} 6= {Tag

′

i,Tag
′

j} for all i, j.

Assume that {Tag
∗,Tagπ} 6= {Tagi,Tag

′
i} for all i = 1, 2, . . . , q. Then, because we also have

{Tag
∗,Tagπ} 6= {Tag

′

i,Tag
′

j} this would straightforwardly contradict the security of the chameleon hash
(noting that we can easily simulate the sanitizer algorithm with the help of the OAdapt oracle). Hence,
assume that {Tag

∗,Tagπ} = {Tagi,Tag
′
i} for some i and, since the random tags picked by the honest

sanitizer are unique with overwhelming probability, we can assume that i is unique.
Because Tagπ 6= Tag

′
i we must have Tag

∗ = Tag
′
i and Tagπ = Tagi. Since (pk∗sig, m

∗) 6= (pksig,i, m
′
i) for

a success there must be some j with (Tag
∗, (j, m∗[j], pk∗sig)) 6= (Tag

′

i, (j, m
′
i[j], pksig,i)). However, assuming

that all sanitizer tags are unique and observing that with overwhelming probability Tag
′

i 6= Tagi and that
for the same tag the prepended block numbers are distinct, it follows that the adversary has generated a new
collision (Tag

∗, (j, m∗[j], pk∗sig)), (Tag
′

i, (j, mπ [j], pk∗sig)) which has not been queried previously. This would
again contradict the security of the chameleon hash function and signer-accountability follows. �
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A Semantic Privacy

We formalize semantic privacy similar to the definition of semantic security of encryption schemes for multiple
messages. We do so following the approach of a posteriori CCA security due to Goldreich [Gol04]. Note that
this definition is also equivalent to the definition of indistinguishability of encryption schemes.

Roughly speaking, semantic privacy means that everything that can be learned about the original mes-
sage from a sequence of signatures, can also be learned without these signature, i.e., from the sanitized
messages only. This intuition is formalized through two experiments where, in one case, an adversary A can
(adaptively) submit descriptionsM1, . . . ,Mq of distributions to a tester oracle TA which samples messages
m1, . . . , mq and modifications according to the distributions and returns the sanitized messages m′

1, . . . , m
′
q

and signatures for them.
In the other experiment a simulator S may also submit distributionsM1, . . . ,Mq to an oracle TS which

samples messages too, but this time only returns the sanitized messages m′
1, . . . , m

′
q to the simulator (without
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the signatures). The goal of both parties is to predict some information f(m1, . . . , mq,M1, . . . ,Mq) about
the original messages, and the security requirement is now that both parties should be (almost) equally
successful. Note that we include the chosen distributions M1, . . . ,Mq into the probabilistic function f to
prevent trivial choices of the simulator.

More formally, the tester oracle TA in A’s experiment takes as input a distribution M and two pub-
lic/secret key pairs (sksig, pksig), (sksan, pksan). It first samples (m,mod,adm) ← M and computes the
signature σ ← Sign(m, sksig, pksan,adm), as well as the sanitized message/signature pair (m′, σ′)← Sanit(m,
mod, σ, pksig, sksan). It returns the pair (m′,mod,adm, σ′). The tester oracle TS for the simulator S is
identical to TA except that TS returns only the triple (m′,mod,adm). With these description of the oracles
we obtain:

Definition A.1 A sanitizable signature scheme SanSig is semantically private, if for any efficient algorithm
A, there exists an efficient algorithm S such that for any efficient probabilistic function f the difference

∣

∣

∣
Prob

[

SemPriv
SanSig-0
A

(n) = 1
]

− Prob
[

SemPriv
SanSig-1
S

(n) = 1
]∣

∣

∣
≈ 0 ,

is negligible, where the experiments are defined as follows:

Experiment SemPriv
SanSig-0
A

(n)
(pksig, sksig)← KGensig(1

n)
(pksan, sksan)← KGensan(1n)

v ← ASign(·,sksig,pksan,·),Sanit(·,·,·,pksig,sksan),Proof(sksig,··· ),TA(sksig,pksig,sksan,pksan,·)(pksig, pksan)
let mi and Mi for i = 1, 2, . . . , q denote the messages mi sampled
according to the distributions Mi submitted to TA.

return 1 iff f(m1, . . . , mq,M1, . . . ,Mq) = v, else 0.

and

Experiment SemPriv
SanSig-1
S

(n)
(pksig, sksig)← KGensig(1

n)
(pksan, sksan)← KGensan(1n)

v ← SSign(·,sksig,pksan,·),Sanit(·,·,·,pksig,sksan),Proof(sksig,··· ),TS(sksig,pksig,sksan,pksan,·)(pksig, pksan)
let mi and Mi for i = 1, 2, . . . , q denote the messages mi sampled
according to the distributions Mi submitted to TS.

return 1 iff f(m1, . . . , mq,M1, . . . ,Mq) = v, else 0.

We prove that the definitions of semantically private sanitizable signature schemes and private schemes are
equivalent.

Theorem A.2 A sanitizable signature scheme is semantically private if and only if it is private.

We prove Theorem A.2 with the following to propositions.

Proposition A.3 Every private sanitizable signature scheme is also semantically private.

Proof. Suppose that SanSig is a private sanitizable signature scheme. We show that SanSig is a semantically
private sanitizable signature scheme by constructing for every efficient adversary A an efficient simulator S.
The construction follows the proof ideas of encryption schemes, namely, building a simulator which executes
a black-box simulation of A on random values and showing that the indistinguishability property of privacy
implies that the success probability of A and S is nearly the same.
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Construction of S. Let A be an efficient algorithm which deduces some partial information, i.e., the value
f(m1, . . . , mq,M1, . . . ,Mq). The simulator S gets as input two public keys (pksig, pksan), it executes A on
these keys and simulates the signing oracle, the sanitizer oracle, and the proof oracle with its own oracles.
Whenever A queries its tester oracle TA on a distribution M, then S invokes TS on M and gets a triple
(m′,mod,adm). Algorithm S picks a message m at random such that applying mod to m yields m′ and
computes the corresponding signature with the help of its signing oracle σ ← Sign(·, sksig, pksan, ·). In order
to obtain a sanitized signature, S queries the sanitize oracle σ′ ← Sanit(·, ·, ·, pksig, sksan) about (m′,mod, σ).
It returns the tuple (m′,mod,adm, σ′). At the end of the simulation, A stops, eventually outputting a value
v which S also outputs.

Analysis. For the analysis note that S is efficient because A is efficient and since the overhead of handling
A’s queries can be done in polynomial time. It is still left to show that the success probability of A and of
S (as described below) are nearly the same:

∣

∣

∣
Prob

[

SemPriv
SanSig-0
A

(n) = 1
]

− Prob
[

SemPriv
SanSig-1
S

(n) = 1
]∣

∣

∣
= ǫ(n) ≈ 0 .

Intuitively, the equation follows from privacy. Let us assume towards contradiction that ǫ(n) is noticeable.
Then we show how to build an algorithm B breaking privacy as follows.

Algorithm B gets as input the public key of the signer pksig as well as the public key of the sanitizer pksan.
It runs a black-box simulation of A on input (pksig, pksan) and answers each signing and sanitizing oracle
query with its own oracles. During the simulation, A may query its tester oracle TA on some distribution
M which algorithm B handles as follows. It picks randomly a triple (m0,mod0,adm0) ← M, and selects
another random message m1 such that both messages m0, m1 map to the same modified message m′, i.e.,
(m0,mod0,adm0) ≡ (m1,mod1,adm1). It invokes its external LoRSanit oracle with theses pairs, receives

(m′
b, σ

′
b) and forwards this pair to A. Algorithm B stores in each execution the message m

(i)
0 as well as

the queried distribution Mi and let q(n) be the number of oracle invocations. When A stops, eventually

outputting a value v, attacker B returns 0 iff f
(

m
(1)
0 , . . . , m

(q)
0 ,M1, . . . ,Mq

)

= v, otherwise 1.

For the analysis of B note that B is efficient since A runs in polynomial-time and because the overhead
of choosing the messages and handling A queries can all be done efficiently. Let us take a look at the choice
of the bit b in the indistinguishability experiment and its effect on our simulation. If the left-or-right oracle
is initialized with b = 0, then A receives the sanitized message-signature pair (m′, σ′) on message m0 which
was previously chosen by A and the second message is ineffectual. This behavior corresponds exactly to
the tester oracle TA, because all values are randomly chosen. In the second case, where the bit b equals 1
in the indistinguishability experiment, A receives the sanitized message-signature pair (m′, σ′) derived from
the randomly chosen message m1. This, however, reflects the behavior of the second tester oracle TS .

Next, we have to analyze the success probability of B in predicting the right bit b∗ = b:

Prob
[

Privacy
SanSig
B

(n) = 1
]

= 1
2

(

Prob
[

Privacy
SanSig
B

(n) = 1
∣

∣

∣
b = 0

]

− Prob
[

Privacy
SanSig
B

(n) = 1
∣

∣

∣
b = 1

])

+ 1
2

Note that our construction maps the choice of the bit b to the different types of experiments in the semantic
security experiment, thus

= 1
2

(

Prob
[

SemPriv
SanSig-0
A

(n) = 1
]

− Prob
[

SemPriv
SanSig-1
S

(n) = 1
])

+ 1
2 .

By our assumption that the difference is noticeable, it follows that the overall probability of B is noticeably
greater than 1

2 . This, however, contradicts the privacy. �

Proposition A.4 Every semantically private sanitizable signature scheme is also private.

23



Proof. Before proving the proposition we note that it suffices to consider the case where the adversary
queries its left-or-right oracle only once. Applying a standard hybrid argument yields a proof for the case of
multiple-message queries.

Let A be an adversary in the privacy experiment. This adversary invokes its external oracle LoRSanit

only once with the tuples (m0,mod0) and (m1,mod1) for the same adm. We then define an adversary A′

which is identical to A but which is executed in the semantic privacy experiment. When adversaryA submits
the pair (m0,mod0,adm0), (m1,mod1,adm1) to its left-or-right oracle we have A′ prepare the distribution
M by the canonical circuit assigning each tuple (m0,mod0,adm0), (m1,mod1,adm1) the same probability
1/2. Then A′ submits this distribution to its tester oracle and forwards the answer to A. When A finally
outputs a guess b∗ we let A′ output this value, too.

We consider some special information f about the original message mb in the experiment of A and of A′,
respectively. The function f first of all excludes any distributionM which is not of the above type. That is,
call a distribution trivial if it does not constitute a canonical description of a distribution over two tuples,
each tuple appearing with the same probability 1/2, or if applying mod to both messages m0 and m1 does
not yield the same message m′, or if m0 = m1, or if the admissible blocks are distinct adm0 6= adm1. Note
that m0 and m1 are recoverable from the description ofM. Define f now by

f(mb,M) =











b′ for random bit b′ ifM is trivial

0 if mb = m0 M is not trivial

1 if mb = m1 M is not trivial.

Note that, with the specification of f , adversary A′ wins in the semantic privacy experiment with the same
probability as A in the regular privacy experiment. But then there exists a simulator S which succeeds
with the same probability as A′ for function f (except for a negligible amount). For any simulator the
probability of winning its experiment is exactly 1/2, though, because for trivial distributions M submitted
by the simulator this is clear and for non-trivial distributions it follows as the sanitized message does not
leak any information about the starting message. Thus, the probability that A predicts the right bit b in
the regular privacy experiment is negligibly close to 1/2. �

B General Message Modifications

In this section we outline how to adapt our security notions for more general message modifications. To this
end we assume that adm and mod are (descriptions of) efficient algorithms such that adm(mod) ∈ {0, 1}
indicates if the modification is admissible and matches adm, i.e., adm(mod) = 1. The function mod maps
any message m to the modified message m′ = mod(m).

The notion of unforgeability remains unchanged. For immutability we demand as before that the ad-
versary’s output (pk∗san, m∗, σ∗) describes a valid message-signature pair under keys pksig, pk

∗

san. With the
general message modification we now require for all queries to the signing oracle for i = 1, 2, . . . , q that
pk∗san 6= pksan,i or m∗ /∈ {mod(mi) |mod with adm(mod) = 1}. Note that, under this general definition, it
may not be efficiently verifiable if the adversary has succeeded.

The notion of privacy under general modifications demands that for each pair (mj,0,modj,0,admj),
(mj,1,modj,1,admj) submitted to the left-or-right oracle the modifications are admissible and yield the
same message, i.e., we simply adapt the notation (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj) accordingly.
Transparency and the accountability notions remain unchanged.

We note that both security implications (transparency implies privacy and accountability implies un-
forgeability) are also valid under this more general notion. The separations remain true as block-based
descriptions of mod and adm constitute a special case.
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C Relationship of Unforgeability and Accountability Revisited

Recall that we have shown that sanitizer- and signer-accountability together imply unforgeability. Here we
show that neither accountability notion alone is sufficient (even if the other properties like transparency
hold).

Proposition C.1 (Independence of Unforgeability and Sanitizer-Accountability) Assume that there
exists a secure sanitizable signature scheme. Then there exists a sanitizable signature scheme which is im-
mutable, transparent and signer-accountable, but not unforgeable nor sanitizer-accountable.

Proof. As in the separation results in Section 4 let SanSig = (KGensig, KGensan, Sign, Sanit, Verify, Proof,
Judge) be once more a secure sanitizable signature scheme and let SanSig′ = (KGensig, KGen′san, Sign′,
Sanit′, Verify′, Proof′, Judge′) be the following modification of SanSig:

• KGensig remains unchanged.

• KGen′san works as KGensan, except that it concatenates a ’1’ to the generated public key, pk′san =
pksan||1.

• algorithms Sign′ and Sanit′ work as the originals except that, if they have produced a signature for
a single-block message which is also modifiable, then they append an additional signature σ0 for the
modifiable all-zero message m0 = 0t for the same public keys to the signature (Sign′ can do this from
scratch and Sanit′ can simply modify the given message to m0 and derive the signature).

• Judge′ takes the public key of the sanitizer and outputs Sig if this public key ends with ’0’. Else, it
runs Judge on the input data (and the public key pk′san with the last bit dropped).

• all other algorithms merely chop off the last bit of pk′san and work as their ancestors (but using the
shortened key).

The scheme is clearly not unforgeable. An adversary can easily query the signature oracle about a single-
block message m 6= 0t (which is also mutable) to recover an extra signature σ0 for m0, and then output this
pair. By the completeness of the underlying scheme Verify′ returns true for this pair and the adversary has
won. The scheme is neither sanitizer-accountable because an attacker can simply choose a key pk∗san ending
with ’0’, use the same trick as in the unforgeabilty case to derive an extra signature σ0 for m0 and force the
judge to output Sig for this new and valid message-signature pair and the key ending with ’0’.

It remains to show that the other properties are preserved. Completeness is obviously inherited. As for
immutability note that a query yielding the extra signature σ0 for m0 makes single-block messages useless
for a successful attack because m0 is a trivial derivation of the query. More formally, given a successful
immutability adversary against the new scheme SanSig′ one could easily construct a successful immutability
adversary against the underlying scheme, simply by making an additional call to the signing oracle about
m0 in case of queries about single-block, modifiable messages.

Regarding transparency any attacker winning in the modified scheme could be turned into a successful
transparency adversary in the original scheme. The derived adversary would only need to make an additional
call to the Sanit/Sign box about m0 whenever the adversary for the modified scheme asks this box about a
single-block, mutable message. Finally, signer-accountability is trivially true as the new judge for honestly
generated keys pk′san always runs in the regular mode. �

Proposition C.2 (Independence of Unforgeability and Signer-Accountability) Assume that there
exists a secure sanitizable signature scheme. Then there exists a sanitizable signature scheme which is
immutable, transparent and sanitizer-accountable, but not unforgeable nor signer-accountable.

Proof. Let again SanSig = (KGensig, KGensan, Sign, Sanit, Verify, Proof, Judge) be a secure sanitizable signature
scheme and consider the modifed scheme SanSig′ = (KGen′sig, KGensan, Sign′,Sanit′, Verify′, Proof′, Judge′):
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• KGen′sig works as KGensig, except that it concatenates a ’1’ to the generated public key, pk′sig = pksig||1.

• KGensan remains unchanged.

• algorithms Sign′ and Sanit′ work as the originals except that, if they have produced a signature for
a single-block message which is also modifiable, then they append an additional signature σ0 for the
modifiable all-zero message m0 = 0t for the same public keys to the signature (Sign′ can do this from
scratch and Sanit′ can simply modify the given message to m0 and derive the signature).

• Judge′ takes the public key of the sanitizer and outputs San if this public key ends with ’0’. Else, it
runs Judge on the input data (and the public key pk′san withthe last bit dropped).

• all other algorithms merely chop off the last bit of pk′san and work as their ancestors (but using the
shortened key).

As in the previous proof it follows that the scheme is not unforgeable and not signer-accountable. Complete-
ness is preserved, and immutability and transparency follow as before. Analogously, sanitizer-accountability
is preserved as Judge′ never enters the exceptional mode in this case. �

D Chameleon Hashing Secure Against Random-Tagging Attacks

In this section we construct a chameleon hash function which provides security under random-tagging attacks,
relying on the RSA assumption and the random oracle model. The idea is to use a standard RSA-based
chameleon hash function (m, r) 7→ gmre mod N , but generate g from Tag and m via the random oracle
H . As m already enters the computation for g = H(Tag, m) this makes the explicit exponentiation with m
obsolete and the hash value becomes gre mod N .

Construction D.1 Define the following chameleon hash function CH = (CHKGen, CHash, CHAdapt) in the
presence of a random oracle H : {0, 1}∗ → Z

∗
N :

Key Generation. Algorithm CHKGen on input 1n generates RSA parameters N, e (with e being prime)
and d for parameter 1n. It returns pk = (N, e) and sk = (N, d).

Hashing. Algorithm CHash on input pk,Tag, m and randomness r computes g = H(Tag, m) and returns
y = gre mod N .

Adapting. Algorithm CHAdapt in input sk,Tag, m, r and Tag
′, m′ computes g = H(Tag, m), y = gre mod

N and g′ = H(Tag
′, m′) and returns Tag

′ together with r′ = (y(g′)−1)d mod N .

A simple calculation confirms that CHAdapt returns a collision for the given data, and that the value is
randomly distributed in Z

∗
N (if r is). It remains to show collision-resistance:

Proposition D.2 The chameleon hash function in Construction D.1 is collision-resistant under random-
tagging attacks in the random oracle model under the RSA assumption.

Proof. Assume towards contradiction that the hash function was not secure and that there exists a successful
adversary A in experiment RndTagCHA (n). We then show how to find for given (N, e, z) the value z1/e mod N
via black-box simulation of A. To this end, we first describe a simulating strategy for algorithm CHAdapt

without knowledge of the secret exponent d, but by programming the random oracle:

random oracle. Whenever the adversary queries the random oracle H about a (new) value, we return
zxte mod N for random x← Ze and t← Z

∗
N . As usual, if the query has been made before, we simply

return the same answer as before again.
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Oracle OAdapt. When the adversary submits a query (Tag, m, r, m′) to oracle OAdapt we first pick
Tag

′ at random. If this value has appeared before we stop outputting “failure”, else we compute
g = H(Tag, m) (possibly querying the simulated random oracle) and y = gre mod N . We set the
random oracle value H(Tag

′, m′) to be g′ = y(r′)−e mod N for random r′ ← Z
∗
N and return (Tag

′, r′).

Note that, given that we do not stop prematurely because of a colliding value Tag
′, the simulation is perfect

from A’s point of view. In particular, the simulation of oracle OAdapt yields g′(r′)e = y mod N and g′ is a
random group element (and r′ is uniquely deterimened by y, g′ and N, e).

Now assume that the adversary wins in the simulation and outputs (Tag, m, r) 6= (Tag
′, m′, r′). Assume

that the adversary has also made the corresponding queries for this final output to the simulated random
oracle; else make these queries now. By definition not both values (Tag, m), (Tag

′, m′) could have appeared
in the answers of the simulated oracle OAdapt for a successful attack. Hence, one of them, say (Tag, m),
yields a value g = H(Tag, m) of the form g = zxte mod N via a simulated random oracle call.

Note that the second value (Tag
′, m′), too, must yield an element g′ = H(Tag

′, m′) of the form g′ =
zx′

(t′)e mod N , either through a direct query to the simulated random oracle or by setting g′ via the
simulated collision-finder. In the first case, x′ is clearly independent of x as (Tag, m) 6= (Tag

′, m′). In
the second case, since a success requires {(Tag, m), (Tag

′, m′)} to be distinct from the pairs appearing in
each communication with oracle OAdapt, the reply including Tag

′ must have been for a different query
(Tagi, mi) 6= (Tag, m). In other words, g = H(Tagi, mi) is of the form g = zx′

(t′′)e mod N for an x′,
independent of x, and so is g′ = g(r(r′)−1)e mod N .

In any case we obtain a collision zx(tr)e = zx′

(t′r′)e mod N for independent x, x′ ∈ Ze. Hence, except
with negligible probability 1/e with which x = x′ mod e, we obtain distinct representations, from which
computing an e-th root of z is easy. �

27


